## 设地 四川省工程建设地方标准

Design standard for energy efficiency of residential buildings in Sichuan Province

DB51/T 5027—2024

主编单位:中国建筑部。 

西南交通大学出版社

即以為其於 即加州為民族縣

## 四川省住房和城乡建设厅 关于发布《四州省房屋建筑工程消防验收现场 评定技术标准》等 8 项四川省工程建设 地方标准的通知

川建标发〔2024〕154号

各市(州)及扩权试点县(市)住房城乡建设行政主管部门,各 有关单位:

现批准《四川省房屋建筑工程消防验收现场评定技术标准》《四川省抗灾型超级基站建设标准》《四川省建筑隔震减震工程施工验收及维护标准》《四川省既有居住小区改造技术标准》《四川省装配式机电安装技术标准》《四川省基坑工程自动化监测技术标准》《四川省基于保持正常使用功能的建筑隔震减震工程设计标准》《四川省居住建筑节能设计标准》等8项为四川省工程建设推荐性地方标准(见附件)。

:《四川省房屋建筑工程消防验收现场评定技术标准》等8项四川省工程建设推荐性地方标准

四川省住房和城乡建设厅 2024 年 8 月 13 日

即以為其於 即加州為民族縣

牛 噩

‡ 《四川省房屋建筑工程消防验收现场评定技术标准》等8项四小省工程建设推荐性地方标准

|                                               |                   |                                                                          |                                       |                              | NA N              |                                                              |   |
|-----------------------------------------------|-------------------|--------------------------------------------------------------------------|---------------------------------------|------------------------------|-------------------------------------------------------|--------------------------------------------------------------|---|
|                                               | 备注                |                                                                          |                                       | 7                            |                                                       |                                                              |   |
| TEXE (X) PET IL 16.                           | 负责技术内容解释<br>《《》单位 | 7. 医数别学四川省建筑科学研究院有限交向。                                                   | 中国移动通信集<br>团设计院有限公司<br>四川分公司          | 四川省建筑科学研究院有限公司               | 四川省建筑科学研究院有限公司                                        | 成都市土木建筑学会                                                    |   |
| 4 0 X F M A Y                                 | 实施时间              | 1 2025年1月1日                                                              | -2024 2025 年 1 月 1 日 团设计院有限公司 四月分公司   | 2025年1月1日                    |                                                       |                                                              |   |
| 11人と1人が1年 //                                  | 标准编号              | DBJ51/T 257—2024 2025 年 1 月 1 日                                          |                                       | DBJ51/T 259—2024 2025年1月1日   | DBJ51/T 260—2024 2025 年 1                             | DBJ51/T 261—2024                                             |   |
| 《티バ 티のほたヅン(ドロの迎えぬめけん)スパがた》 すりやけがはしばないにけ にどびがた | 王編 单位             | 四川省建筑科学研<br>究院有限公司、四川<br>省建设工程消防和勘<br>察设计技术中心                            | 中国移动通信集团 ( )                          | b                            | 四川省既有居住 统院有限公司、成都四川省既有居住 建工集团有限公司、成都区改造技术标准 四八省建筑工程质量 | 成都市土木建筑学<br>会、成都建工集团有 DBJ51/T 261—2024 2025 年 1 月 1 日<br>限公司 |   |
|                                               | 地方标准名称            | 四川省房屋建筑<br>四川省房屋建筑<br>完院有限公司、四川<br>工程消防验收现场省建设工程消防和<br>评定技术标准<br>察设计技术中心 | 四川省抗灾型超级基站建设标准                        | 四川省建筑隔震<br>滅震工程施工验收<br>及维护标准 | 四川省既有居住小区改造技术标准                                       | 四川省装配式机电安装技术标准                                               |   |
|                                               | 序号                | 1                                                                        | S S S S S S S S S S S S S S S S S S S | 3                            | 4                                                     | 8                                                            |   |
|                                               | <                 |                                                                          |                                       |                              |                                                       |                                                              | 5 |

|             |            |                |                                                     |                                        |                      | ×.   |   |     |     |  |
|-------------|------------|----------------|-----------------------------------------------------|----------------------------------------|----------------------|------|---|-----|-----|--|
|             | 续表         | 备注             |                                                     |                                        |                      |      |   |     |     |  |
|             |            | 负责技术内容解释<br>单位 | 内国建筑西南勘<br>察安什研究院有限<br>公司                           | 中国建筑西南极计研究院有限公司                        | 中国建筑西南设计研究院有限公司      |      |   |     |     |  |
|             |            | 实施时间           | 2025年1月1日                                           | 2025年1月1日                              | -2024 2025 年 1 月 1 日 | 1, 1 |   |     |     |  |
| <i>&gt;</i> |            | 标准编号           | DBJ51/T 262—2024 2025年1月1日                          | 2025年1月1日                              | DB51/T 5027_2024     |      |   |     |     |  |
|             |            | 主編単位           | 的工程 中国建筑西南勘察 拉工程 设计研 発暢有限公 技术标 司、成都市建设工程施工程 施工安全监督站 | 于保持<br>能的建 中国建筑西南设计<br>工程设 研究院有限公司     | 中国建筑西南设计<br>研究院有限公司  |      | 4 |     | No. |  |
|             |            | 地方标准名称         | 四川省基坑工程<br>自动化监测技术标<br>准                            | 四川省基于保持<br>正常使用功能的建<br>筑隔震滅震工程设<br>计标准 | 四川省居住建筑<br>朽能设计标准    |      |   | , , |     |  |
|             |            | 序号             | 9                                                   | 7                                      | 8                    |      |   |     |     |  |
|             | $\epsilon$ | Ó              |                                                     | NA NA                                  |                      |      |   |     |     |  |
|             |            |                |                                                     |                                        |                      |      |   |     |     |  |

即以為其於 即加州為民族縣 前言

本标准依据四川省住房和城乡建设厅《关于下达 2022 年四川省工程建设地表标准制定修订计划(第一批)的通知》(川建标函〔2022〕1169号)的要求,由中国建筑西南设计研究院有限公司会同有关单位共同修订完成。

修订本标准的目的是要进一步提高四川省居住建筑热工性能, 为实现四川省节约能源和保护环境的战略、贯彻有关政策和法规 做出技术保证。在标准的修订过程中,标准编制组调研了四川省 不同气候区近年来建筑节能工程实践经验,借鉴了国内外编制此 类标准的先进经验,并结合四川省各地区经济条件和开展建筑节 能工作的实际情况,在广泛浓求意见的基础上,经过反复讨论、 修改后定稿。

本标准的主要技术内容: 1. 总则; 2. 术语; 3. 气候分区及室内外热环境计算参数; 4. 规划与建筑设计; 5. 建筑围护结构热工设计; 6. 供暖通风和空气调节; 7. 给水排水; 8. 电气; 9. 可再生能源利用。

本标准修订的主要技术内容:

增加了给水排水、电气章节;

- 2. 针对不同地区,分别提出了节能%%,72%和68%的目标;
- 3. 更新了不同气候区围护结构都位的限值及围护结构权衡 判断时的限值要求;
  - 4. 调整了外墙平均传热系数的计算方法;
  - 5. 可再生能源利用方面,新增了光伏系统设计的相关内容,

并将热泵系统分为地源热泵及空气源热泵分别表述;

6. 根据相关规范和市场情况,调整了玻璃、窗的传热系数, 以及常用建筑材料热物理性能计算参数等附录内容。

本标准由四川省住房和城乡建设厅负责管理,中国建筑西南设计研究院有限公司负责技术内容的解释。本标准实施过程中,如发现有需修改或补充的地方,请将意见和有关资料寄至中国建筑西南设计研究院有限公司(地址:成都市天府大道比较 866 号;邮编: 610041;电话:028-62551517; E-mail; 如为20xnjz.com)。

主编单位:中国建筑西南设计研究院有限公司

编 单 位 : 四川省建筑设计研究院有限公司

成都市建筑设计研究院有限公司

西南交通大学、

四川大学

四川省建筑科学研究院有限公司

台玻成都玻璃有限公司

湖南旗滨节能玻璃有限公司

**泗川零零昊科技有限公司** 

四川双花科技发展有限公司

四川省黄氏防腐保温工程有限公司

主要起草人: 钟辉智 冯 雅 刘 民 贺 刚 雷 波

戎向阳 王家良 窦 枚 尹 忠 邹秋生

高庆龙 张 昊 钟 李 慧 石利军

付韵潮 南艳丽 彖 涛 司鹏飞 王 晓郭文华 刘 洪 王 强 任 亮 李金一

主要审查人: 刘小舟 秦河 张仕忠 李 波 黄志强

邓长彬、桑恒鹏

即以為其於 即加州為民族縣

|      |   |          | 33/1/1/                                       |                 |
|------|---|----------|-----------------------------------------------|-----------------|
|      |   |          |                                               |                 |
|      |   |          | NV'                                           |                 |
|      |   |          | · / <b>国</b> ジ次                               |                 |
|      |   |          |                                               |                 |
|      | 1 | 总        | 则                                             | 1               |
|      | 2 | 术        | 语                                             | 2               |
|      | 3 | 气候       | 学分区及库内外热环境计算参数                                | 6               |
|      | 4 | 规划       | ]与建筑设计                                        | ····· 8         |
|      |   | 4.1      | 般规定                                           | 8               |
|      | K | (4.2)    | 居住区规划                                         | 8               |
| (1)  |   | 4.3      | 建筑设计                                          | 9               |
|      | 5 | 建筑       | I.围护结构热工设计······                              | 12              |
| Min, |   | 5.1      | 围护结构热工设计                                      | 12              |
|      |   | 5.2      | 围护结构热工性能校衡判断                                  | 18              |
|      | 6 |          | 爱通风和空气调节//··································· | 22              |
|      |   | 6.1      | 一般规定                                          |                 |
|      |   | 6.2      | 热源、热为站及热力网                                    | 22              |
|      |   | 6.3      | 供暖系统                                          | 26              |
|      | _ | 6.4      | 通风和空气调节系统                                     | 27              |
|      | 7 | 给水       |                                               | 29              |
|      | < | Min.     | 一般规定                                          | 29              |
|      |   | 7.2      | 给水与排水系统                                       | 29              |
|      | 8 | 7.3<br>电 | 生活热水                                          | 31              |
|      | 0 | 8.1      | 一般却字                                          | 24              |
|      |   | 8.2      | 世配由 玄统 · · · · · · · · · · · · · · · · · ·    | 34              |
|      |   | 0.2      | 一般规定 供配电系统                                    | J <del>-1</del> |
|      |   |          | , ************************************        | 11              |
|      |   |          |                                               |                 |
|      |   |          | N.                                            |                 |

|     |     |          | X <sub>1</sub>          |    |
|-----|-----|----------|-------------------------|----|
|     |     |          |                         |    |
|     |     |          |                         |    |
|     |     | 8.3      | 照 明                     |    |
|     | 9   |          | 「生能源利用·······37         |    |
|     | ,   | 9.1      | 一般规定······37            |    |
|     |     | 9.2      | 被动式太阳房 37               |    |
|     |     | 9.3      | 主动式太阳能供暖                |    |
|     |     | 9.4      | 光伏系统 42                 |    |
|     |     | 9.5      | 地源热泵系统                  |    |
|     |     |          | 令气热泵系统                  |    |
|     | 附   | 录入       | 四川省主要城市的气候区属、气象参数、耗热量   |    |
|     | - K | ×, ) ~   | 指标                      |    |
| (1) | 附   | √<br>录 B | 外墙平均传热系数和热当量体形系数计算方法52  |    |
|     | 附   | 录 C      | 地面传热系数计算 ·····69        |    |
| Mr. | 附   | 录 D      | 外遮阳系数的简化计算及太阳得热系数计算73   |    |
|     | 附   | 录 E      | 各类新建居住建筑平均能耗指标78        | K1 |
|     | 附   | 录 F      | 关于面积和体积的计算              | >  |
|     | 附   | 录 G      | 主动式太阳能热水供暖系统集热器总面积计算 81 |    |
|     | 附   | 录 H      | 玻璃的光学、热工性能和窗的传热系数83     |    |
|     | 附   | 录 J      | 常用建筑材料热物理性能计算参数88       |    |
|     | 附   | 录 K      | 常用建筑材料太阳辐射吸收系数ρ值99      |    |
|     | 本   | 标准用      | 用词说明 · · · · · · 102    |    |
|     | 引   | 用标准      | 作名录 · · · · · · 104     |    |
|     | 附   | : 条文     | 文说明 ······ 106          |    |
|     |     |          |                         |    |
|     |     |          |                         |    |
|     |     |          |                         |    |
|     |     |          |                         |    |
|     |     | 12       |                         |    |
|     |     |          | 文说明                     |    |
|     |     |          |                         |    |

|      |    | . **1                                                         |             |
|------|----|---------------------------------------------------------------|-------------|
|      |    |                                                               |             |
|      |    |                                                               |             |
|      |    |                                                               |             |
|      |    | Contents                                                      |             |
|      | 1  | General provisions 1                                          |             |
|      | 2  | Terms 2                                                       |             |
|      | 3  | Climate zones and parameter of calculation for indoor thermal |             |
|      | 4  | environmental 6  Planning and building design 8               |             |
|      | ٦  | 4.1) General requirement                                      |             |
| 1    | īX | 4.2 Planning design of dwelling districts 8                   |             |
|      |    | 4.3 Building design                                           |             |
| 1111 | 5  | Building envelop thermal design                               | $\triangle$ |
|      |    | 5.1 Building envelop thermal design ·······12                 | X1          |
|      |    | 5.2 Building envelop thermal performance trade-off            | >           |
|      | 6  | Energy efficiency design on HVAC system                       |             |
|      |    | 6.1 General requirement                                       |             |
|      |    | 6.2 Heat source, heating plant and heat supply network22      |             |
|      |    | 6.3 Heating system                                            |             |
|      | <  | 6.4 Ventilation and air-conditioning system27                 |             |
|      | 7  | Water supply and drainage29                                   |             |
|      |    | 7.1 General requirement29                                     |             |
|      |    | 7.2 Water supply and dramage system                           |             |
|      |    | 7.3 Service water heating                                     |             |
|      |    | 13                                                            |             |
|      |    |                                                               |             |
|      |    |                                                               |             |

|    |              |              |         | XI                                                                            |              |
|----|--------------|--------------|---------|-------------------------------------------------------------------------------|--------------|
|    |              |              |         |                                                                               |              |
|    |              |              |         | K-7.                                                                          |              |
|    | 8            | Electr       | ric ··· | 34                                                                            |              |
|    |              | 8.1          | Gene    | eral requirement 34                                                           |              |
|    |              | 8.2          | Powe    | er supply and distribution system ······34                                    |              |
|    |              | 8.3          | Ligh    | ting35                                                                        |              |
|    | 9            | Utiliz       | ation   | n of renewable energy37                                                       |              |
|    |              | 9.1          | Ger     | neral requirement                                                             |              |
|    |              | 9.2          | Pas     | sive solar house37                                                            |              |
|    |              | 9.3          | Act     | tive solar heating                                                            |              |
| νí | -K           | <b>5</b> 9.4 | Pho     | otovoltaic system · · · · 42                                                  |              |
| 1) | $\Diamond$   | 9.5          | Gro     | ound source heat pump system                                                  |              |
|    |              | 9.6          | Air     | source heat pump system · · · · · 44                                          | ^            |
| V  | Ap           | pendix       | κA      | Climate zone oritoria Weather data Heat loss index                            | V/-          |
|    |              |              |         | requirements of building for cities in Sichuan ······ 46                      | \(\sqrt{1}\) |
|    | Ap           | pendix       | кВ      | Methodology for mean heat transfer coefficient of                             | ~            |
|    | ۸            | 1:           | - C     | external wall                                                                 |              |
|    | Ар           | pendix       | -K      | Heat transfer coefficient calculation of ground                               |              |
|    | Ap           | pendix       |         | Simplified calculation of external shading coefficient                        |              |
|    | <            | U),          |         | and calculation of solar heat gain coefficient73                              |              |
|    | Ap           | pendix       | ĸΕ      | Average energy consumption of different kinds of new residential buildings 78 |              |
|    | Δn           | pendix       | F       | Building area and volume79                                                    |              |
|    | _            | pendix       |         | Calculation formula of collector area in active solar                         |              |
|    | 7 <b>1</b> P | pendix       |         | building ·····81                                                              |              |
|    |              |              |         | KXXX,                                                                         |              |
|    |              | 14           |         | 1                                                                             |              |
|    |              |              | ,       |                                                                               |              |
|    |              |              |         |                                                                               |              |

|    |                | . **1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |                | Onticed and thermal interference of aloss and heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|    | Appendix H     | Optical and thermal performance of glass and heat transfer coefficient of outside window83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|    | Appendix J     | Calculation parameters of themophysical properties for common building material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    | Appendix K     | Absorption coefficients of solar radiation ( $\rho$ ) for common building material98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|    | Explanation o  | f wording in this standard · · · · · · 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|    | List of quoted | standards · · · · 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|    | Addition: Exp  | standards 103 planation of provisions 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ıŃ |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta$ |
| V  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                | W. Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X1<br>>> |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~        |
|    |                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|    | V.             | XX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|    | , iX           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    | Mr.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |                | NA X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|    |                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|    | <              | HIR HIR WAR TO SEE THE RESIDENCE OF THE PARTY OF THE PART |          |
|    |                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

即以為其於 即加州為民族縣



- 为贯彻国家及四川省的相关法律、法规和方针政策 步改善居住建筑室的环境,提高能源利用效率,降低建筑能耗及 碳排放,制定本标准。
- 碳排放,制定本标准。 1.0.2 本标准适用于四川省城镇规划区内新建、改建和扩建的 集体宿舍、住宅式公寓、组合建筑的住宅部分等居住建筑 节能设计。
- 0.3 居住建筑的节能设计应根据当地的气候条件和社会经济 发展水平等,在保证室内热环境参数的条件下,通过科学的规划 良好的天然采光、适宜的自然通风和完善的功能设计,改 善围护结构保温隔热性能、提高供暖空调等设备及系统的能效和 合理利用可再生能源,达到降低建筑使用过程中运行能耗的目标。 1.0.4 四川省居住建筑的节能设计,除应符合本标准的规定, 尚应符合国家和四川省现行有关标准的规定。 善围护结构保温隔热性能、提高供暖空调等设备及系统的能效和



2.0.1 供暖度日数 Leating degree day based on 18 °C

一年中,当某关室外日平均温度低于 18°C 时,将该早平均温度与 18°C 的差值乘以 1 天,并将此乘积累加,得到一年的供暖度日数,为了区别其他基准温度的供暖度日数,有时称之为HDD18。

2.0.2 空调度日数 cooling degree day based on 26 °C

一年中,当某天室外日平均温度高于 26°C 时,将该日平均温度与 26°C 的差值乘以 1 天,并将此乘积累加,得到一年的空调度日数,为了区别其他基准温度的空调度日数,有时称之为 CDD26。

2.0.3 计算供暖期天数 (Z) heating period for calculation

采用滑动平均法计算出的累年日平均温度低于或等于 3 的天数。计算供暖期天数仅供建筑节能设计计算时使用,与当地法定的供暖天数不一定相等。

2. 0. 4 计算供暖期室外平均温度(te) mean outdoor temperature during heating period

计算供暖期室外日平均温度的算术平均值。

2.0.5 商业服务网点 commercial facilities

设置在住宅建筑的首层或首层及上层,每个分隔单元建筑面积不大于300 m²的商店、邮政所、储蓄所、理发店等小型营业性用房。

2.0.6 建筑物体形系数(S) shape coefficient of building

建筑物与室外大气接触的外表面积与其所包围的体积的比值。外表面积中,不包括地面和地下室外墙面积,体积中不包括地下室体积。

2.0.7 热当量体形系数 thermal equivalent shape coefficient

在高海拔严寒和寒冷地区,考虑朝向布局对建筑热环境的影响及冬季各朝向的得失热差异,对各朝向表面积进行修正计算得到的体形系数,也称之为热当量体形系数。

- **2.0.8** 建筑物耗热量指标( $Q_H$ ) index of heat loss of building 在计算供暖期室外平均温度条件下,为保持室内热环境设计计算温度,单位时间内单位建筑面积消耗的需由室内供暖设备供给的热量。单位为  $W/m^2$ 。
- 2.0.9 线传热系数 (Ψ) linear heat transfer coefficient 当围护结构两侧空气温度为单位温差时,通过单位长度热桥

部位的附加传热量。 单位为 W/(m·K)。

2.0.10 围护结构传热系数 (K) heat transfer coefficient of building envelope

表征围护结构两侧空气温差为 1 K, 在单位时间内通过单位面积围护结构的传热量。单位为 W/(m²·K)。

2.0.11 外墙平均传热系数(Km) average heat transfer coefficient of external wall

考虑外墙存在由不同墙体材料构成的各部位传热系数加权的 平均传热系数。单位为 W/(m²、\*\*\*)。

**2.0.12** 围护结构传热系数的修正系数( $\varepsilon_i$ ) correction factor for overall heat transfer coefficient of builing envelope

考虑太阳辐射和天空长波辐射对外围护结构传热影响的修正 系数。

2.0.13 热惰性指标 (D) index of thermal inertia

表征围护结构反抗温度波动和热流波动能力的无量纲指标, 其值等于各构造层材料的热阻与蓄热系数乘积之和。

2.0.14 太阳得热系数 (SHGC) solar heat gain coefficient

通过透光围护结构(门窗或透光幕墙)进入室内的太阳辐射得热量与投射到透光围护结构(门窗或透光幕墙)外表面上的太阳辐射量的比值。太阳辐射室内得热量包括太阳辐射通过辐射透射的得热量和太阳辐射被构件吸收再传入室内的得热量两部分。

2. 0. 15 耗电输热比值(EHR) ratio of electricity consumption to transferied heat quantity

在供暖室内外热环境设计算温度下,全日理论水泵输送耗电量与全日系统供热量比值。两者取相同单位,无因次量。

- 2. 0. 16 空调年计算耗电量 annual cooling electricity consumption 按照夏季空调至内热环境设计计算参数,计算出的单位建筑面积空调设备年所消耗的电能。
- 2. 0. 17 供暖年计算耗电量 annual heating electricity consumption 按照冬季室内热环境设计标准和设定的计算条件,计算出的单位建筑面积供暖设备年所要消耗的电能。
- 2. 0. 18 空调、供暖设备能效比(EER) energy efficiency ratio 在额定工况下,空调、供暖设备提供的冷量或热量与设备本身所消耗的能量之比。
- **2.0.19** 典型气象年(TMY) typical meteorological year 以近 10 年的月平均值为依据,从近 10 年的资料中选取月平

均状态最接近近 10 年平均状态的月作为典型气象月,由各典型 气象月组成的假想年。由于选取的典型气象月在不同的年份,资 料不连续,有时还需要进行为间平滑处理。

**围护结构热工性能权衡判断** building envelope trade-off 2, 0, 20 option

当建筑设计术能完全满足规定的围护结构热工设计指标的要 求时, 计算法比较设计建筑与参照建筑的全年供暖和空调能耗, 判定围架结构总体热工性能是否满足节能设计的要求。

reference building

在进行围护结构热工性能权衡判断的、根据所要设计的建筑 模型作为比较对象的一栋符合节能要求的假想建筑。

高海拔严寒(寒冷)地区。plateau-severe cold (cold) cliamte zone

(候严寒(寒冷)干燥,长冬无夏的 海拔在 2 000 m 以上,, 地区, 称为高海拔严寒(寒冷)地区。

太阳能光伏发电系统 solar photovoltaic (PV) syste 2. 0. 23 利用太阳能中池的光伏效应将太阳辐射能直接转换成电能的 发电系统, 简称光伏系统。

建筑集成光伏发电系统 building integrated photovoltaic (BIPV)

光伏发电设备作为建筑材料或构件, 在建筑上应用的形式, WINNER FRANKE 也称光伏建筑一体化。

# 3 气候分区及室内外热环境计算参数

3.0.1 依据各地累全最冷月、最热月平均干球温度、供暖度具数 HDD18 及空调度总数 CDD26 等指标,将四川地区居住建筑节能设计分区划分为表 3.0.1 所示的 4 个气候区。

表 3.0.1 四川省建筑节能设计气候分区

| ~           |                  | 一级分区                                                        | 指标                           | 二级分区                      | 区指标                       | 备注                   |
|-------------|------------------|-------------------------------------------------------------|------------------------------|---------------------------|---------------------------|----------------------|
| <b>大</b> 東位 | <b>卖分区</b>       | 最冷月平均<br>干球温度 T <sub>h</sub>                                | 最热月平均<br>干球温度 Tc             | 采暖度日数<br>HDD18/<br>(*C・d) | 空调度日数<br>CDD26/<br>(°C・d) | (海拔 <i>H</i><br>修正)  |
| 高海拔         | 严寒地区<br>I )      | $T_{\rm h}$ <-4 °C                                          | 37%                          | MDD18>4 500               | _                         |                      |
| 高海拔<br>寒冷   | 寒冷 A 区<br>(ⅡA)   | $-4$ °C ≤ $T_{\rm h}$ ≤ 0 °C                                |                              | 3 500≤HDD18<br>≤4 500     |                           | 当 H≥<br>3 000 m      |
| 地区<br>(Ⅱ)   | 寒冷 B 区<br>( Ⅱ B) | 0 °C < T <sub>h</sub> ≤ <b>X</b> °C                         | ) '-                         | 2 000≤HDD18<br><3 500     |                           | 时,应属、于高海拔、严寒地区       |
|             | >冷地区 Ⅲ)          | 3.°C < 7, ≤8 °C                                             | <i>T</i> <sub>c</sub> ≥22 °C | 1 000≤HDD18<br><2 000     | CDD26≥50                  | ¥ <i>H</i> ≥ 2 500 m |
| 温和地区        | 温和 A 区           | $3 \degree \text{C} < T_{\text{h}} \le 10 \degree \text{C}$ | <i>T</i> <sub>c</sub> <22 °C | HDD18≥1 000               | CDD26<50                  | 时,应属<br>于高海拔         |
| (N)         | 温和B区             | 8 °C < T <sub>h</sub>                                       | <i>T</i> <sub>c</sub> ≥22 °C | HDD18<1 000               | CDD26≥50                  | 寒冷地区                 |

注: 四川省建筑气候分区图见本标准附录 A。项目所在地具体气候区属可以参照气候分区图以及项目所在地海拔修正来确定。

- 3.0.2 冬季供暖室内热环境计算参数应符合下列规定:
  - 1 室内计算温度取 18 °C;
  - 2 高海拔严寒、寒冷地区换气次数取 0.5 次/h;
  - 3 夏热冬冷、温和地逐换气次数取 1.0 次/h。

- 3.0.3 夏季空调室内热环境计算参数应符合下列规定:

  - 1 计算温度取 26°C; 2 换气次数取 1.0 次版
- 3.0.4 采用太阳能供暖房间的冬季室内热环境计算参数应符合 下列规定:
- 即川港展開

### 4 规划与建筑设计

#### 4.1 一般规定

- 4.1.1 不同气候区平均节能率应符合下列规定:
  - 1 高海拔严寒和寒冷地区居住建筑平均节能率应为75%;
- 2 除高海拔严寒和寒冷地区外,成都市建筑平均节能率应为 72%,其他夏热冬冷地区及温和地区居住建筑平均节能率应为 48%
- 全.1.2 居住建筑与公共建筑组成一幢建筑时,公共建筑部分应按现行地方标准《四川省公共建筑节能设计标准》DBJ 51/143 进行节能设计。
- **4.1.3** 居住区规划布局应根据场地资源、地形及气候条件,按照 因地制宜的原则,合理进行建筑布局,采用适宜的技术,充分利用可再生能源,营造健康、舒适、节能、环保、生态的室外环境。
- 4.1.4 居住建筑的形体设计应根据建设场地条件,综合考虑建筑整体和内部功能布置、规划和体形系数要求,确定适宜的形体。
- 4.1.5 属往建筑设计应以保证室内环境参数和使用功能为前提,按照被动节能措施优先的原则,充分利用天然采光、自然通风,采用适宜的围护结构保温、隔热措施,提高建筑设备及系统的能源利用效率,降低建筑的用能需求。

#### 4.2 居住区规划

4.2.1 居住区选址宜选择有良好日照和自然通风条件的地块,

不宜布置在洼地。场地布局应同时进行有利于日照、天然采光、自然通风及隔声降噪的用地竖向规划。

- 4.2.2 居住区规划设计应符合下列规定:
- 1 建筑群规划布局应尊重并利用现状自然资源条件,保护 生态环境,合理控制业石方工程量;
- 2 建筑群的总体规划和建筑的单体平面设计应为可再生能源利用创造条件,并应有利于冬季充分利用日照、避开冬季主导风向并降低冷风对建筑的影响,夏季减少太阳热辐射并利于夏季和过渡季自然通风的组织;
- 3 建筑平面、立面及窗口设计应利、室内自然通风。进风口 与出风口的位置应有利于形成穿堂风、进风口面积应大于出风口 面积,有条件时宜进行室内自然通风效果分析。
- 4.2.3 建筑物的朝向宜采用南北向或接近南北朝向。建筑之间的间距应符合现行国家标准《城市居住区规划设计标准》 GB 50180 中有关日照要求的相关规定。
- 4.2.4 居住区环境绿化应满足当地城市规划部门有关绿地率的规定,充分利用原有自然水体,增加绿地植被和绿化种植,合理控制硬质地面、并可通过垂直绿化、屋面绿化、透水地面等改善居住区热环境。

#### 4.3 建筑设计

4.3.1 居住建筑体形系数应符合表 4.3.1 的规定,其中高海拔严 寒、寒冷地区建筑宜采用热当量体形系数代替体型系数指标,当 不符合上述规定时必须按照本标准第 5.2 节的规定进行权衡判断。

#### 表 4.3.1 居住建筑体形系数限值

|            | . 117 |       |
|------------|-------|-------|
| 热工区划       |       | 建筑层数  |
| 松工区划       | <3层   | >3 层  |
| 高海拔严寒地区(I) | ≤0.55 | ≤0.30 |
| 高海拔寒冷地区(   | ≤0.57 | ≤0.33 |
| 夏热冬冷地区(川)  | ≤0.60 | ≤0.40 |
| 温和地区(JV)   | ≤0.60 | 0.45  |

- 4.3.2 居住建筑的主要功能房间窗墙面积比应 于 0.8, 非主要功能房间的窗墙面积比应小于 0.4。
- **4.3.3** 居住建筑的屋面天窗与所在房间屋面面积的比值应符合表 4.3.3 的规定。

表 4.3.3 居住建筑屋面天窗面积的限值

|                    | XX_ N/  |        |      |  |  |  |  |
|--------------------|---------|--------|------|--|--|--|--|
| 屋面天窗面积与近在房间屋面面积的比值 |         |        |      |  |  |  |  |
| 高海拔严寒地区            | 高海拔舞冷地区 | 夏热冬冷地区 | 温和A区 |  |  |  |  |
| ≤10%               | ≤15%    | ≤6%    | ≤10% |  |  |  |  |

- 4.3.4 外门窗设计应符合下列规定:
- 1 夏热冷、温和 A 区居住建筑外窗的通风好口面积不应小于房间地面面积的 5%;温和 B 区居住建筑外窗的通风开口面积不应小于房间地面面积的 10%。厨房、卫生间的外窗通风开口面积不应小于外窗面积的 45%。
- **2** 当卫生间外窗开启面积不能满足上述规定时,应设有机械通风换气设施。
- 3 居住建筑外窗及敞开阳台的门的气密性等级应不低于国家标准《建筑幕墙、门窗通用技术条件》GB/T 31433—2015 中建

筑外门窗气密性的6级,幕墙的气密性等级应不低于3级。

- 4 外窗幕墙玻璃的可见光透射比不应小于 0.40。
- 5 卧室、书房、起居室(厅)、厨房应设置外窗,房间窗地面积比不应小于 1/7。
  - 6 高海拔严寒和寒冷地区建筑外墙不应设置外凸(飘)
- 4.3.5 遮阳设计应符合下列规定:
- 1 夏热冬冷及温和地区东、西向主要功能房间外窗和透光 幕墙应采取遮阳措施,有条件时可优先设置活动遮阳;
  - 外遮阳装置的设计、施工和验收应与建筑工程同步进行。
  - 3.6 屋顶、外墙设计应符合下列规定
- 1 夏热冬冷及温和地区的屋面面层及建筑外墙饰面宜采用 浅色饰面或种植屋(墙)面,减少外表面对太阳辐射热的吸收;
- **2** 夏热冬冷及温和地区的外墙宜优先采用外墙内保温、自保温以及保温结构一体化系统;
- **3** 钢、木结构等轻型结构体系的居住建筑,屋顶、外墙宜采用符合装配式建筑要求的保温与结构一体化系统。
- 4.3.7 电梯应具备节能运行功能。两台及以上电梯集中排列时,应具备群控功能。电梯无外部召唤,且轿厢内一段时间无预置指令时,应具备自动转为节能运行模式的功能。电梯系统宜采用变频调速拖动方式和能量回馈装置。
- 4.3.8 楼、电梯间宜采用封闭式,封闭式楼梯间外墙应设保温层。 与室外连接的门窗应能密闭,门宜采用自动密闭措施。高海拔严 寒地区楼梯间宜供暖,高海拔寒冷地区楼梯间应封闭。入口处应 设门斗或采取其他防寒措施。
- 4.3.9 新建居住建筑应设置太阳能系统。

### 5 建筑围护结构热工设计

5.1.1 高海拔严寒地区、高海拔寒冷地区、夏热冬冷地区、温和地区建筑围的结构热工性能限值应符合下列规定,当不符合下列规定时应按照本标准第 5.2 节的规定进行围护结构热工性能的权 衛制縣

1 高海拔严寒地区围护结构热工性能应符合表 5.1.1-1 的限

表 5.1.1-1 高海拔严寒地区围护结构热工性能限值

| ** */                   |                    |                       |
|-------------------------|--------------------|-----------------------|
| 围护结构部位【】】               | 传热系数 K/[V          | $V/(m^2 \cdot K)$     |
| 国化 知 如 即 加              | ≤3 层               | >3 层                  |
| 屋面人                     | ≤0.20              | ≤0.20                 |
| 外稿                      | ≤0.25              | ≤0.35 X               |
| 底面接触室外之气的架空或外挑楼板        | ≤0.25              | 0.35                  |
| 阳台门下部芯板                 | ≤1.20              | €1.20                 |
| 非供暖地方室顶板(上部为供暖房间时)      | ≤0.40 √///         | ≤0.40                 |
| 分隔供暖与非供暖空间的隔墙、楼板        | ≤1.20              | ≤1.20                 |
| 分隔供暖与非供暖空间的户门           | 1.50               | ≤1.50                 |
| 分隔供暖设计温度温差大于 5 K 的隔墙、楼板 | 1.50               | ≤1.50                 |
| 围护结构部位                  | 保温材料层热阻            | $R/[(m^2 \cdot K)/W]$ |
| 周边地面                    | <sup>1</sup> ≥1.80 | ≥1.80                 |
| 地下室外墙(与土壤接触的外墙)         | ≥2.00              | ≥2.00                 |

注: 色达应参照国家标准《建筑节能与内再生能源利用通用规范》GB 55015—2021 中表 3.1.8-1 进行取值。

性能应符合表 5.1.1-2 的限 2 高海拔寒冷地区围护结构热 值要求。

表 5.1.1-2 高海拔寒冷地区围护结构热工性能限值

| 3/\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                           | _ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|---|
| 围护结构部位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 传热系数 K/[V         | W/ ( m <sup>2</sup> · K ) |   |
| III 1) - 5-1 1-9-11-11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤3 层              | >3 层                      |   |
| NA SECTION AND ADDRESS OF THE PARTY OF THE P | ≤0.25             | \$0.25                    |   |
| 外墙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤0.35             | €0.45                     | ] |
| 底面接触室外空气的架空或外挑楼板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≤0.35             | <sup>'</sup> ≤0.45        | ] |
| 阳台门下部芯板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤1.70             | ≤1.70                     |   |
| 非供暖地下室顶板(上部为供暖房间时)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤0.50             | ≤0.50                     |   |
| 分隔供暖与非供暖空间的隔墙、楼板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.50              | ≤1.50                     |   |
| 分隔供暖与非供暖空间的户门 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | €2.00             | €2.00                     | ] |
| 分隔供暖设计温度温差大于 5 K 的隔墙、楼板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤1.50             | ≤1.50                     | ] |
| 围护结构部位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 保温材料层热阻。          | $R/[(m^2 \cdot K)/W]$     |   |
| 周边地面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥1.60             | ≥1.60                     | X |
| 地下室外墙(与土壤接触的外墙)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≥1.80             | ≥1.80                     |   |
| 3 夏热冬冷地区更为结构热工性能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>E应符合表 5.1.</b> | 1-3、表 5.144               |   |
| 的限值要求。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | XX                        |   |
| 表 5.1.1-3、夏热冬冷地区(成都地区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )围护结构热工           | 性能限值                      |   |
| J.C. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>壮地</b> 安米 1753 | 17(7) 2 x \ 1             | 1 |

|                  |                                         | ///>-                      |
|------------------|-----------------------------------------|----------------------------|
| 围护结构部位           | 传热系数 K/<br>D≤2.5//                      | $[W(m^2 \cdot K)]$ $D>2.5$ |
| 屋面               | <i>D</i> ≈ 2.3                          | S 0.40                     |
|                  |                                         |                            |
| 外墙               | ×× < 0.60                               | ≤0.90                      |
| 底面接触室外空气的架空或外挑楼板 | ≤0.80                                   |                            |
| 分户墙、楼梯间隔墙、外走廊隔墙  | ) · · · · · · · · · · · · · · · · · · · | 1.50                       |
| 凸窗不透明的顶、底和侧板     | <b>//</b>                               | 1.50                       |
| 楼板               |                                         | 1.80                       |
| 户门               | <b>*</b>                                | 2.00                       |

## 表 5.1.1-4 夏热冬冷地区(其他地区)围护结构热工性能限值

| 围护结构部位 少,        | 传热系数 K/       | $[W/(m^2 \cdot K)]$ |
|------------------|---------------|---------------------|
| 图 17 - 5日 4分 印 区 | <i>D</i> ≤2.5 | D>2.5               |
| 屋面               | ≤0.40         | ≤0.40               |
| 外墙               | ≤0.60         | ≤1.00               |
| 底面接触室外空气的架空或外挑楼板 | ≤1.00         |                     |
| 分户墙、楼梯间隔墙、外走廊隔墙  | \$            | 1.50                |
| 凸窗不透明的顶、底和侧板     | , \$          | 1450                |
| 楼板               |               | 1.80                |
| 户门               | V/V «         | €2.00               |

温和地区围护结构热工性能应符合表 5.1.1-5、表 5.1.1-6 4 温和的限值要求。

表 5.1.1-5 温和 A 区围护结构热工性能限值

| Λ/X/ <sub>4</sub> |        |                               |
|-------------------|--------|-------------------------------|
| 围护结构部位            | 传热系数 K | /[W/ ( m <sup>2</sup> · K ) ] |
|                   | D≤2.5  | D>2.5                         |
| 屋面                | ≤0.40  | ≤0.40                         |
| 外墙                | ≤0.60  | <1.00                         |
| 底面接触室外空气的架空或外挑楼板  | \$     | 1.00                          |
| 分中牆、楼梯间隔墙、外走廊隔墙   | Z.     | 1.50                          |
| 楼板                |        | ₹1.80                         |
| 户门                | -12/-  | €2.00                         |

## 表 5.1.1-6 温和 B 区围护结构数工性能限值

|    | 围护结构部位 | Lizz  | 传热系数 K/[W/(m²・K)] |
|----|--------|-------|-------------------|
|    | 屋面     | XXXXX | ≤1.00             |
|    | 外墙     |       | ≤1.80             |
| 14 | 国川港    |       |                   |

- 5.1.2 居住建筑非透光围护结构热工性能计算应符合下列规定:
- 1 外墙的传热系数、热惰性指标是指考虑了热桥影响后加权计算得到的平均传热系数。平均热惰性指标;
  - 2 对于精装房、楼板的传热系数可按装修后的情况计算;
- 3 当外墙使烟太阳辐射吸收系数 $\rho_s$ 小于 0.5 的反射隔热外饰面层时,外墙的平均热惰性指标  $D_m$ 按下式修正:

$$D_{\rm m}' = D_{\rm m} \times \beta$$

式中 修正后的外墙平均热惰性指标;

 $p_{m}$ ——建筑节能设计计算的外墙平均热惰性指标;

β—修正系数,根据设计计算的处墙平均热惰性指标 D<sub>m</sub> 的范围按表 5.1.2 取值 σ

表 5.1.2 修正系数 β

| $D_{ m m}$ | $D_{\rm m} > 3.0$ | $2.0 < D_{\rm m} \le 3.0$ | <i>D</i> <sub>m</sub> ≤2.0 |
|------------|-------------------|---------------------------|----------------------------|
| β          | 1.20              | 1.15                      | 1.05                       |

5.1.3 透光围护结构传热系数和不同朝向太阳得热系数应符合表 5.1.3-1 和表 5.1.3-2 的规定。若采用被动太阳能供暖的高海拔严寒和寒冷地区的居住建筑,其南向外窗的热工性能要求应满足本标准第 9.2 节被动式太阳房设计中的相关规定。

表 5.1.3-1 高海拔严寒和寒冷地区外窗传热系数限值

|      | 透光围护结                       | 传热系数                                      | 传热系数限值 K/[W/(m²·K)] |                    |  |
|------|-----------------------------|-------------------------------------------|---------------------|--------------------|--|
| 读候   | ガスカナイ<br>内面积/m <sup>2</sup> | 外窗                                        | 天窗                  |                    |  |
| 分区   | (以洞口尺寸 计算)                  | 起居室、卧室、书房<br>及厨房等功能房间<br>股厨房等功能房间<br>的储藏室 |                     | 起居室、卧室及<br>书房等功能房间 |  |
| 高海拔  | ≤4.0                        | ≤1.4                                      | √ ≤1.4              | ≤1.4               |  |
| 严寒地区 | >4.0                        | ≤1, <b>4</b>                              | <b>≪1.4</b>         | ≪1.4               |  |
| 高海拔  | ≤4.0                        | \$1.5                                     | ≤1.8                | ≤1.8               |  |
| 寒冷地区 | >4.0                        | 1.5                                       | ≪1.8                | €1.8               |  |

#### 表 5.1.3-2 夏热冬冷、温和地区外窗的传热系数限值和不同朝向 太阳得热系数限值

|  | V-5                                                                                                                                         |                              |                      |                           |                                |                       |
|--|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|---------------------------|--------------------------------|-----------------------|
|  |                                                                                                                                             | 透光围护                         |                      | 大房及厨房等<br>16房间            | 卫生间、楼梯间、建筑面积小于 5 m²的储藏室        |                       |
|  | 气候<br>分区                                                                                                                                    | 结构面积<br>/m²(以洞<br>口尺寸<br>计算) | 传热系数限值<br>KNV (m·K)] | 综合太阳得热系数 SHGC(东、西向/南向/天窗) | 传热系数限值<br><i>K</i> [W/ (m²・K)] | 综合太阳得热系数 SHGC 东。西向/南向 |
|  | 夏热冬冷<br>地区                                                                                                                                  | 4                            | )<br>≤2.0            |                           | -3                             |                       |
|  | (成都 /                                                                                                                                       | 4.5                          | ≤1.6                 | 夏季≤0.25/冬季<br>≥0.50/≤0.20 | ≤2.5                           | 夏季≤0.40/—/<br>≤0.20   |
|  | まる 本<br>対<br>を<br>対<br>を<br>対<br>を<br>対<br>を<br>対<br>を<br>対<br>を<br>が<br>は<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に | ≪4.5                         | €2.0                 | ≥0.30/ ≤0.20              | DE V                           | ≪0.20                 |
|  | 地区域)                                                                                                                                        | >4.5                         | ≤1.8                 | 1//                       |                                |                       |
|  | 温和                                                                                                                                          | ≤4.5                         | €2.5                 | —/冬季≥0.50/                | ≤2.8                           | —/冬季≥0.50/            |
|  | A区                                                                                                                                          | >4.5                         | €2.0                 | <b>50.30</b>              | ₹2.8                           | ≤0.30                 |
|  | 温和                                                                                                                                          | ≤4.5                         | €2.8                 | 憂季≤0.40/—/                | ≤3.5                           | 夏季≤0.40/—/            |
|  | $B \boxtimes$                                                                                                                               | >4.5                         | ≤2.5                 | €0.30                     | ≈3.3                           | ≤0.30                 |

5.1.4 透光围护结构基工性能的相关设计和计算应符合下列

规定:

1 透光围绕结构包含住宅外窗、入户大厅通高外窗、阳台门透明部分及长窗等。

2 朝命应按下列规定选取:

1) 严寒、寒冷地区建筑朝向中的"北"应为从北偏东小于 60°至北偏西小于 60°的范围;"东、西"应为从东或西偏北小于或等于 30°至偏南小于 60°的范围;"南"应为从南偏东小于等于 30°至偏西小于或等于 30°的范围。

2) 其他气候区建筑朝向中的"北"应为从北偏东小于 30°

至北偏西小于 30°的范围; "东、西"应为从东或西偏北小于或等于 60°至偏南小于 60°的范围; "南"应为从南偏东小于或等于 30°至偏西小于或等于 30°的范围。

- 3 凸窗面积应按窗洞口面积计算。
- 4 确定外窗的传热系数限值时,外窗面积按每个房间的外窗面积累加计算。
- 5 太阳得热系数系指透光围护结构综合太阳得热系数,计 算时应符合下列规定:
  - 1) 有外遮阳时,综合太阳得热系数;透光围护结构太阳 得热系数×外遮阳构件的遮阳系数;
  - 2) 无外遮阳时,综合太阳得热系数=透光围护结构太阳 得热系数;
  - 3)外遮阳构件的遮阳系数和透光围护结构太阳得热系数 按照附录 D 进行计算。
- 6 内遮阳仅作为改善室内热环境和控制眩光的措施,不过 其遮阳系数。
- 5.1.5 建筑外墙写屋面的热桥部位、外窗(门)洞口室外部分的侧墙面应进行保温处理;保证热桥部位的内表面温度不低于室内设计温、湿度条件下的空气露点温度,夏热冬冷地区和温和地区可不做热桥处理。
- 5.1.6 高海拔严寒、寒冷地区与土壤直接接触地面、地下室、半地下室的外墙应根据用途采取合理保温措施,热工性能应符合本标准 5.1.1 条的规定。夏热冬冷地区与土壤直接接触地面,地下室、半地下室的外墙应做保温防潮处理,保证其内表面温度不低于室内设计温、湿度条件、的空气露点温度。

- 5.1.7 封闭式阳台的保温应符合下列规定:
- 1 如果阳台和直接连通的房间之间不设置隔墙和门、窗,则将阳台认作为所连通房间的一部分。阳台窗、阳台栏板、顶板及地面的热工性能应符合 5.1.1 条和 5.1.3 条的规定。
- 2 如果阳台和直接连通的房间之间设置了隔墙和门、窗、且阳台和直接连通的房间之间的隔墙、门、窗的热工性能符合 5.1.1 条和 5.1.3 条的规定,则对阳台外围护结构没有特殊热工要求。
- 3 如果阳台和直接连通的房间之间设置了隔墙和门、窗,且阳台和直接连通的房间之间的隔墙、门、窗的传热系数不满足5.1.1 条和 5.1.3 条的规定,则阳台与室外变气接触的墙板、顶板、地板的传热系数不应大于第 5.1.1 条表中所列限值的 1.2 倍,高海拔严寒地区阳台窗的传热系数不应大于 2.0 W/(m²·K),高海拔寒冷地区和夏热冬冷地区阳台窗的传热系数不应大于 2.2 W/(m²·K)。5.1.8 常用建筑材料的热物理性能参数应按本标准附录 I 取值、本标准附录未载人材料的热物理性能参数,可按现行的国家和地
  - 5.2 围护结构热工性能权衡判断
- 5.2.1 居住建筑围护结构应优先采用规定性指标进行设计。当设计居住建筑的体形系数及围护结构热工性能指标不符合本标准4.3.1 条和 5.1 节的相关要求时,则应按4 节的规定进行围护结构热工性能权衡判断。
- **5.2.2** 高海拔严寒、寒冷地区建筑围护结构热工性能权衡判断 应符合下列规定:

方相关标准规范要求采用。

1 高海拔严寒、寒冷地区居住建筑进行权衡判断时,窗墙面积比基本要求应符合表 5.2.2-1的规定,围护结构传热系数基本要求不得低于表 5.2.2-2 的规定。

表 5.2.2-1 高海拔严寒、寒冷地区居住建筑窗墙面积比基本要求、

| 热工区划 "  |            | 居住建筑窗墙面积比 | Xa   |
|---------|------------|-----------|------|
| MILEN V | <b>/</b> 南 | 北         | 东、西  |
| 高海拔严寒地区 | 0.55       | 0.35      | 0.40 |
| 高海拔寒冷地区 | 0.60       | 0.40      | 0.45 |

#### 表 5.2.2-2 高海拔严寒、寒冷地区围护结构权衡判断基本要求

|       |                     | 外窗 K/[W/(n | n <sup>2</sup> · K ) ] | 架空或外挑楼              | 屋面 K/                    |
|-------|---------------------|------------|------------------------|---------------------|--------------------------|
| ✓ 热工  | 外墙 K/               | 非被动太阳能     | 被动太阳                   | 板 K/                | [W/(m <sup>2</sup> ·K)]及 |
| 区划    | $[W/(m^2 \cdot K)]$ | 供暖/被动太阳    |                        | $[W/(m^2 \cdot K)]$ | 周边地面和地下<br>室外墙的 R        |
|       |                     | 能供暖非南向     | 南向                     |                     | 工/1.周17.1                |
| 严寒 地区 | 0.50                | 2.2        | 不得降低                   | 0.50                | 不得降低                     |
| 寒冷地区  | 0.60                | 2.5        | 不得降低                   | 0.60                | 不得降低                     |
| 地区    |                     | XIII       |                        |                     | 11/5-                    |

- 2 建筑围护结构热工性能权衡判断应采用动态计算方法对 建筑围护结构进行热工性能权衡判断。
- **3** 以全年供暖、空调年耗电量之和表征的建筑方能综合指标不太无参考建筑为判据,计算边界条件应符合了列要求:
  - 1) 整套住宅室内计算温度, 冬季全天为 18°C, 夏季全天 为 26°C。
  - 2)室外气象计算参数采用典型气象年。
  - 3)供暖和空调时,换气次数为 0.5 次/h。
  - 4)供暖、空调设备为家用空气源热泵空调器,空调额定能效比取 3.6, 供暖额定能效比 3.0。当供暖设备为燃

气锅炉时,供暖系统的综合效率取 0.85。

- 5)室内其他得热平均强度为 4.3 W/m<sup>2</sup>。
- 6) 建筑面积和体积应按本标准附录 F 计算。
- **5.2.3** 夏热冬冷地区建筑围护结构热工性能权衡判断应符合下列规定:
- 1 夏热冬冷地区居住建筑进行权衡判断时,围护结构热工性能基本要求不得低于表 5.2.3 的规定。

表 5.2.3 夏热冬冷地区围护结构权衡判断基本要求

| <u> </u>   |                         |                     |             |                          |                          |
|------------|-------------------------|---------------------|-------------|--------------------------|--------------------------|
| (AVT)      | 「<br>外墙 K/              | 外窗                  |             | ▲ 屋面 K/                  | 楼板 K/                    |
| 区划         | [W/(m <sup>2</sup> ·K)] | $[W/(m^2 \cdot K)]$ | 太阳得热《系数》/// | ( m <sup>2</sup> · K ) ] | [W/ (m <sup>2</sup> ·K)] |
| 夏热冬冷<br>地区 | 不得降低                    | 不得降低                | ≤0.4(夏)     | 不得降低                     | €2.5                     |

- **2** 建筑围护结构热工性能权衡判断以采用动态计算方法计算的供暖、空调年耗电量方和表征的建筑节能综合指标为判据。
  - 3 建筑节能综合指标计算边界条件应符合下列要求:
    - 1)整套住宅室内计算温度,冬季全天为18°C,夏季全天为26°C。
    - 2)室外气象计算参数采用典型气象年。
      - 供暖和空调时,换气次数为1.0次/4
    - 4)供暖、空调设备为家用空气源热泵空调器,空调额定能效比取 3.6,供暖额定能效比 3.0。当供暖设备为燃气锅炉时,供暖系统的综合效率取 0.85。
    - 5)室内其他得热平均强度为 4.3 W/m<sup>2</sup>。
    - 6) 建筑面积和体积应按本标准附录 F 计算。
    - 4 所设计建筑的供暖公室调年计算耗电量之和,不应超过参

照建筑的供暖、空调年计算耗电量,并应符合下列规定:

- 1)参照建筑的建筑形状。大小、朝向、平面划分及使用 功能均应与所设计建筑完全相同。
- 2)当所设计建筑的体形系数超过本标准第 4.3.1 条规定的上限值时,应按比例缩小参照建筑每个开间外墙的面积,并间空出的面积用绝热墙覆盖,使得参照建筑与传热的外围护面积除以参照建筑体积的体形系数等于表 4.3.1 条规定的限值。
- 3)参照建筑各部分围护结构的传热系数应符合本标准第 5.1.1条和第5.1.3条的规定。
- 5.2.4 温和地区建筑围护结构热工性能权衡判断应符合下列 规定:
- 1 温和居住建筑进行权衡判断时,围护结构热工性能基本要求不得低于表 5.2.4 的规定。

表 5.2.4 温和地区围护结构权衡判断基本要求

| 热工区划 | 外墙K          | 外窗                    | Ĩ      | 屋面 K/[W/(㎡·K)]      |
|------|--------------|-----------------------|--------|---------------------|
| 松工区划 | [W/ (m² K) ] | $K/[W/(m^2 \cdot K)]$ | 太阳得热系数 | 是闽 K/[W/(iii · K/)] |
| 温和A区 | X,oo         | 3.2                   | 不得降低   | 不得降低                |
| 温和B区 | 不得降低         | _                     | 不得降低   | 不得降低                |

**2** 建筑围护结构热工性能权衡判断应采用动态计算方法对建筑围护结构进行热工性能权衡判断。※

- **3** 以全年供暖、空调年耗电量方和表征的建筑节能综合指标不大于参考建筑为判据,室内环算参数取值同 5.2.3 条。
- 4 采用太阳能供暖房间的冬季室内热环境计算参数:室内 计算温度取 16 ℃,换气次数取 1.0 次/h。

### 6 供暖通风和空气调节

#### 6.1 一般规定

- 6.1.1 供暖和/或)空气调节系统冷、热源集中设置的居住建筑,施工图设计阶段应对空调或供暖区的每一个房间的冬季热负荷和夏季逐时冷负荷进行计算,并提供计算书。
- **6.1.2**)居住建筑的集中供暖系统,应按热水连续供暖进行设计。 住宅区内的商业、文化及其他公共建筑,应按相关规范要求进行 设计。
- 6.1.3 供暖和(或)空气调节系统冷、热源集中设置的居住建筑, 必须具备住户分户热量分摊的条件;设计时应设置分户热量分摊 装置或预留安装该装置的位置。

#### 热源、热力站及热力网

- 6.2.1 居住建筑供暖,空调的热、冷源方式及设备的选择,可根据资源情况、环境保护、能源效率及用户对费用可承受的能力等综合因素,经技术经济分析比较确定。
- 6.2.2 供暖热源应根据建筑物规模、用途、建设地点的能源条件、结构、价格以及节能减排和环保政策的相关规定等,通过综合论证确定,优先采用可再生能源或 工业余热,并应符合下列规定:
- 1 有可供利用的废热、不收余热或地热的区域,供暖宜采用上述热源。

- 2 太阳能丰富地区宜利用太阳能作为供暖热源。当以太阳 能光热为热源时,宜设置辅助热源,辅助热源宜采用空气源热泵; 当以太阳能光伏作为能源时、宜采用并网系统,与市电共同保证 用户供暖需求。
- 3 太阳能丰富的高寒地区,建筑较为分散时,宜以太阳能光 伏作为主要能源,与市电共同保证用户供暖需求。光优供能系统 应具备就地控制与云端监测控制功能,减少维护工作量。
- 於电力充足和供电政策支持、太阳能发电能量满足电加热需求或者建筑所在地无法利用其他形式的能源外,居住建筑不 应采用直接电热供暖。
- 6.2.3 新建锅炉房时,应考虑与城市热网连接的可能性。锅炉房 宜建在靠近热负荷密度大的地区,并应满足该地区环保部门对锅 炉房的选址要求。
- 6.2.4 电加热锅炉运动数率应不低于97%。
- 6.2.5 采用户式燃气热水器作为热源时,户式燃气热水器的热效率不应低于80%。
- 6.2.6 室外管网输送效率应大于 92%。
- 6.2.7 锅炉房和热力站的一/二次水总管上,必须设置计量总供 热量的热量表。集中供暖系统中建筑物的热力入口处,必须设置 楼前热量表,作为该建筑物供暖耗热量的结算依据。
- 6.2.8 供暖系统采用变流量水系统时,循环水泵宜采用变速调节方式;水泵台数宜采用 2 台(1 点使用 1 台备用)。系统较大时,可通过技术经济分析后合理增加台数。
- 6.2.9 热媒水系统的水质、应符合现行国家标准《工业锅炉水质》

GB 1576 的规定。

- 6.2.10 室外管网应进行严格的水力平衡计算,各并联环路之间的压力损失差值,不应大于13%。当室外管网水力平衡计算达不到上述要求时,应在热力站和建筑物热力入口处设置水力平衡阀。
- 6.2.11 水力平衡阀的设置和选择,应遵循以下原则:
  - 1 阀两端的压差范围,应符合阀门产品标准的要求
- 2 热力站出口总管上,不应串联设置自力式流量控制阀;当有多个分环路时,各分环路总管上可根据水力平衡的要求设置静态水力平衡阀。
- 3 定流量水系统的各热力入口, 应设置手动水力平衡阀或 自力式流量控制阀。
  - 4 变流量水系统的各热力人口,应设置压差控制阀。
- 5 采用静态水力平衡阀时,应根据阀门流通能力及两端压 差选择确定平衡阀的直径与并度。
  - 6 采用自力式流量控制阀时,应根据设计流量进行选型。
- 7 采用自力式定差控制阀时,应根据所需控制压差选择与管路同尺寸的阀门,同时应确保其流量不小于设计最大值。
- 8 选择自力式流量控制阀、自力式压差控制阀、电动平衡两通阀或动态平衡电动调节阀时,应保持阀权度。550.3~0.5。
- 6.2.12 在选配供热系统的热水循环泵时,应计算循环水泵的耗电输热比(EHR),并应标注在施工图的设计说明中。EHR值应符合下式要求:

EHR= 
$$N/Q\eta \le A(20.4 + \alpha \sum L)/\Delta t$$
 (6.2.12)

式中 N——水泵在设计工况点的轴功率(kW); Q——建筑供热负荷(kW);

η—电机和传动部分的效率。按表 6.2.12 选取;

 $\Delta t$ ——设计供回水温度差( $^{\circ}$ C),按照设计要求选取;

A——与热负荷有关的计算系数,按表 6.2.12 选取;

 $\sum L$  — 室外主产线 (包括供回水管)总长度 (m);

-与 > 发有关的计算系数,按如下选取或计算;;

当 $L \le 400 \text{ m}$  时, $\alpha = 0.011 \text{ 5}$ 

#### 表 6.2.12 电机和传动效率及 FHR 计算系数

| 当 $400 < \sum L < 1~000~\mathrm{m}$ 时, $\alpha = 0.003.833 + 3.067/\sum$ 当 $\sum L \ge 1~000~\mathrm{m}$ 时, $\alpha = 0.006~9$ 表 $6.2.12$ 电机和传动效率及 ENR 计算系数 |                     |         |         |         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------|---------|--|--|--|--|--|--|--|
| 11/1                                                                                                                                                        | 热负荷 Q/kW            |         | <2 000  | ≥2 000  |  |  |  |  |  |  |  |
|                                                                                                                                                             | 电机和传动部分的效率 <b>η</b> | 直联方式    | 0.87    | 0.89    |  |  |  |  |  |  |  |
| V                                                                                                                                                           | 电视神区初即为的双千月         | 联轴器连接方式 | 0.85    | 0.87    |  |  |  |  |  |  |  |
|                                                                                                                                                             | 计算系数 4              |         | 0.006 2 | 0.005 4 |  |  |  |  |  |  |  |

- 设计一、二次数水管网时,应采用经济合理的敷设方式 对于庭院管网和二次网,宜采用直埋管敷设。对于一次管网、 管径较大且地下水位不高时,或者采取了可靠的地沟防水措施时, 可采用地沟敷设。
- 6.2.14 热水锅炉房热力系统设计应能适应由下行为节能引起 的较太幅度的负荷变化。
- 6.2.15 区域供热锅炉房应设计采用。数 式,确保能满足以下要求:
  - 1 实时检测;
  - 2 自动控制;
  - 按需供热:

- 4 安全保障;
- 5 健全档案;
- 6 锅炉房、热力站的动力用电和照明用电应分别计量。
- **6.2.16** 在夏季需要空调、冬季需要供暖的地区,宜优先考虑选用空气源等热泵技术作为供暖与空调的冷热源。

#### 6.3 供暖系统

- 6.3.1、供暖系统的热媒种类及温度的选取应符合现行国家标准 《良用建筑供暖通风与空气调节设计规范》GB 50736 的有关规定。
- 6.3.2 室内的供暖系统的制式,宜采用双管系统,或共用立管的分户独立循环系统。当采用单管系统时,应设置跨越管或装置分配阀(H阀)。
- 6.3.3 集中供暖的分户热量分摊,可通过下列途径来实现:
- 1 温度法:按户设置温度传感器,通过测量室内温度,结合每户建筑面积,以及楼栋供热量进行热量(费)分摊;
- 2 热量分配表法:每组散热器设置蒸发式或电子式热量分配表,通过对散热器散发热量的测量,并结合楼栋热量表计量得出的供热量进行热量(费)分摊;

**3** 户用热量表法:按户设置热量表,通过测量流量和供、回水温差进行热量计量,进行热量(费)分摊

- **4** 面积法: 在不具备以上条件下的。也可根据楼前热量表计量得出的供热量,结合各户面积进行热量(费)分摊等。
- **6.3.4** 室内采用散热器供暖时、每组散热器的进水支管上应安装散热器恒温控制阀。

- **6.3.5** 除老年人和特殊功能要求的建筑外,散热器应明装。必须暗装时,装饰罩应有合理的气流通道、足够的通道面积,并方便维修。散热器的外表面应制业金属性涂料。
- 6.3.6 散热器供暖系统应采用热水作为热媒;散热器集中供暖系统宜按 75°C/50°C/连续供暖进行设计,且供水温度不宜大于85°C,供回水温差不宜小于20°C。
- 6.3.7 采用低温地面辐射供暖时,供暖系统供水温度不应超过60°C;采用散热器供暖时,供暖系统供水温度不宜超过85°C。不同热源供暖时,供回水温度及温差宜根据热源形式,经技术经济分析后确定。
- 6.3.8 低温电热膜供暖时每个房间或独立区域应设置温控器; 当同一房间或区域电热膜用电负荷超过温控器额定负荷时,可设 置多台温控器,也可采用接触器组合的控制方式。
- 6.3.9 室内热水供暖系统的设计应进行水力平衡计算,并应采取措施使设计工况时条件联环路之间(不包括共用段)的压力损失相对差额不大于15%。

#### 6.4 通风和空气调节系统

- 6.4.1 应结合建筑设计,首先确定全年各季节的自然通风措施,并应做好室内气流组织,提高自然通风效率,减少机械通风和空调的使用时间。当在大部分时间内自然通风不能满足降温要求时,宜设置机械通风或空气调节系统、设置的机械通风或空气调节系统不应妨碍建筑的自然通风。
- 6.4.2 采用分散式房间空调器进行空调和(或)供暖时,宜选择

符合国家节能等级要求的产品,机组性能应符合现行国家标准《建筑节能与可再生能源利用通用规范》GB 55015 的规定。

- 6.4.3 采用电机驱动压缩机的蒸气压缩循环冷水(热泵)机组, 名义制冷量大于 7 100 W 的电机驱动压缩机单元式空气调节机组 或多联式空调(热泵)机组作为冷热源机组时,机组性能应符合 《建筑节能与可隔生能源利用通用规范》GB 55015 的规定。
- 6.4.4 设有集中新风供应的居住建筑,当新风系统的送风量大于或等来 4 000 m³/h 时,宜设置排风热回收措施。无集中新风供应但有集中排风的居住建筑,经技术经济比较后宜分户(或分室)设置带热回收功能的双向换气装置。
- 6.4.5 居住建筑中的风机盘管或多联机室内机组,应配置自动调节冷、热量的温控器。
- 6.4.6 采用变风量全空气直接膨胀风管式空调机时,宜按房间设计配置风量调控装置。///
- 6.4.7 设计风机盘管系统加新风时,新风宜直接送入各空气调 节区,不宜经过风机盘管机组后再送出。
- **6.4.8** 空气调节风系统不应设计土建风道作为空气调节系统的 送风道和已经过冷、热处理后的新风送风道。
- 6.4.9 设备与管道的保冷层厚度应按以下原则计算确定:
- 供冷或冷热共用时,应按现行国家标准《设备及管道绝热设计导则》GB/T 8175 中经济厚度和防止表面凝露的保冷层厚度方法计算,并取厚度较大值;
- 2 冷凝水管应按现行国家标准《设备及管道绝热设计导则》 GB/T 8175 中防止表面结露保冷厚度方法计算确定。

# 7 给水排水

#### 7.1 一般规定

- 7.1.1 给水排水系统设计应符合现行国家标准《建筑给水排水设计标准》GB 50015、《民用建筑节水设计标准》GB 50355 和《建筑给水排水与节水通用规范》GB 55020 的有关规定。
- 7.1.2 雨水下渗和收集利用应满足《建筑与小区雨水控制及利用工程技术规范》GB 50400、《四川省低影响开发雨水控制与利用工程设计标准》DBJ 51/T084 等相关标准的规定。
- 7.1.3 非亲水性的室外景观水体补水水源不得采用市政自来水和地下井水。
- 7.1.4 给水系统应采用节水型的器具、设备和配套产品,并应按使用用途和管理要求设置计量装置。
- 7.1.5 生活热水加热站房应设置冷水进水、热媒或能源等计量装置。

#### 7.2 给水与排水系统

- 7.2.1 给水系统应充分利用城镇给水管网或小区给水管网的水 压直接供水。
- 7.2.2 用水点处水压大于 0.2 MPa 的配水支管应采取减压措施, 并应满足用水器具工作压力的要求。
- 7.2.3 生活给水系统二次加压及调蓄设施的设置位置、供水方

式和供水分区等应根据城镇给水条件、用水规模、供水高度、设备性能、物业管理、供水安全、降低能耗等因素综合确定。

- 7.2.4 生活供水二次加压系统当有条件采用高位水箱的供水方式时,宜优先采用高位水箱供水系统;在获得城镇供水管理部门许可的条件下,可采用叠压供水设备补水的高位水箱供水系统。
- 7.2.5 生活供水工次加压系统当采用城镇供水管-低位水箱-泵组-高位水箱,用户的供水方式时,应满足下列要求;
- 1 成位水箱的设置位置应考虑充分利用城镇供水管网水压的进水可能性,低位水箱进水管口处的水压不宜大于 0.2 MPa;
- **2** 低位水箱宜设于地下 1 层及以上,不应设置在地下 3 层 及以下楼层。
- 7.2.6 生活供水二次加压系统的水泵选型,应满足下列要求:
  - 1 宜选用成套水泵机组%
  - 2 应根据管网水力计算结果选择水泵,水泵应在高效区运行;
- 3 采用变频机组制,应提高水泵机组在高效区运行的时段 占比;
- 4 变频泵组的水泵和变频器宜——对应,泵组控制宜采用等量同步、效率均衡、全变频运行模式。
- 7.2.7 给水泵设计选型时其效率不应低于现行国家标准《清水离心案能效限定值及节能评价值》GB 19762 规定的节能评价值。
- 7.2.8 绿化灌溉应根据绿地面积大小、管理形式、植物类型和水 压等因素,选择不同类型的高效节水溝溉方式,并符合下列要求:
  - 1 绿化灌溉宜采用雨水、再生水等非传统水源;
  - 2 应采用滴灌、微喷灌、喷灌等高效节水灌溉方式;
  - 3 宜设置土壤湿度感应器、气候变化调节器等节水装置;

- 4 当灌溉用水采用再生水时,禁止采用喷灌。
- 7.2.9 建筑地面以上的生活等。废水排水宜采用重力流方式直接排至室外污水管网。
- 7.2.10 地下室不应采用设置集水坑抽排地下水的方式,排除地下室底板下的地下水。

#### 7.3 生活热水

- 7.3.1 居住建筑生活热水系统的设置,应满足下列要求:
- 》、1<sup>1</sup> 用水量较小、用水点分散的生活热火系统宜采用局部加热供应系统;
- **2** 用水量较大、用水点集中的生活热水系统应采用集中热水供应系统。
- 7.3.2 居住建筑集中热水供应系统的热源应通过技术经济比较确定,并按下列顺序选择热源和热水制备系统:
- 1 具有稳定、可靠的余热、废热的场所,应优先余热、废热 地热直接加热或预加热系统制备热水;
- 2 太阳能 日照时数大于 1 400 h/a 且年太阳能辐照量大于 4 200 MJ/6 及年极端最低气温不低于-45 ℃地区/应充分利用屋面和立面安装太阳能热水系统,并应与太阳能光伏利用系统相协调;
  - 3 夏热冬冷、温和地区宜采用空气源热泵制备热水;
  - 4 采用区域性锅炉房或附近的锅炉房供给蒸汽或高温热水;
  - 5 采用燃油、燃气热水机组、 似谷电蓄热设置制备热水。
- 7.3.3 居住建筑采用户式燃气热水器作为生活热水热源时,户 式燃气热水器的热效率不应低于89%。

7.3.4 当采用空气源热泵热水机和制备生活热水时,热泵热水机在名义制热工况和规定条件下,性能系数(COP)不宜低于表7.3.4的规定,并应有保证水质的措施。

|            | 7.3.4 二版 / ( COI ) ( W/W ) |       |      |      |  |  |  |  |  |  |  |
|------------|----------------------------|-------|------|------|--|--|--|--|--|--|--|
| 制热量 H/kW   | 热水                         | 机型式   | 普通型  | 低温型  |  |  |  |  |  |  |  |
| H<10.      | 一次加热式                      | 4.40  | 3.60 |      |  |  |  |  |  |  |  |
| Helding    | 静态                         | 加热式   | 4.40 | _    |  |  |  |  |  |  |  |
|            | 一次                         | 加热式   | 4.40 | 3.70 |  |  |  |  |  |  |  |
| $H \ge 10$ | 循环加热                       | 不提供水泵 | 4.40 | 3.70 |  |  |  |  |  |  |  |
|            | ABLI MENN                  |       |      |      |  |  |  |  |  |  |  |

表 7.3.4 热泵热水机性能系数 (COP) (W/W)

- 7.3.5 建筑太阳能热水系统设计应满足下列要求:
- 1 太阳能热水系统选型应根据太阳能资源、气候条件、建筑功能、使用要求、安装条件、水质硬度等因素综合确定;

4.30

3.60

- 2 辅助热源的热量官按无太阳能时确定,并应满足《建筑给水排水设计标准》 GB 50015 的有关规定。
- 7.3.6 设有锅炉房等加热设备时,宜对锅炉等加热设备排出的 高热废水进冷热回收利用。
- 7.3.7 以然气或燃油作为热源时,宜采用燃气或燃油机组直接制备热水。
- 7.3.8 集中热水供应系统应采取保证用水点冷、热水供水压力平衡和供水温度稳定的技术措施, 并应满足下列要求:
- 1 热水供水分区应与用水点处的冷水分区一致;当不能满足时,应采取保证系统冷热水压力平衡的措施。
  - 2 在热水用水点处宜设置带调节压差功能的混合器、混合阀。

- 3 大型公共浴室官采用高位冷、热水箱重力供水, 当由热水 箱经加压供水时应有保证系统《\*\*热水压力平衡和稳定的措施。
- 4 采用热泵热水机制备生活热水时,热水储水温度可适当 降低至50℃,并应采取保证水质的措施。
- 7.3.9 集中热水系绕应设置热水循环系统,热水循环系统应满 足下列规定: ///
- 集中热水供应系统的水加热设备,其出水温
  - 热水配水点的出水温度不低于 46 °C的出水时间,不应大
- 热水循环泵的启、停控制温度分根据热水最不利用水点 处控制水温或温度控制探测装置设置点位置经计算确定:
  - 热水循环泵可根据使用要求采用分时段运行控制。
- 7.3.10 集中热水供应系统的下列设备和管道应做保温、保温 的厚度应经计算确定。
  - 水加热器、储热器、分(集)水器等;
  - 热水系统的供水管、回水管和阀门;
  - 从热源或热水炉来的热媒管道。
- 局部热水系统的住宅内最远处热水用水点距水加热装置 的管道长度超过 12 m 时, 应设置热水循环泵及循环管或采取电 伴执措施。
- 7.3.12 设有3个或3个以上卫生间的住宅、酒店式公寓、别墅 宜设置热水循环泵及循环管或配置电伴热保温措施。

# 8/0 电气

#### 8.1 一般规定

- 8.1.1 住宅建筑电气设计应做到技术先进、安全可靠、经济合理。 高效节能。加通过技术经济比较,采用适宜的节能控制措施。
- 8.1.2 电气和智能化系统应选用高效节能、环果、安全、性能先进的电气产品,提高电能利用率。

#### 8.2 供配电系统

- 8.2.1 应根据其特点、用电容量、结合地方供电部门的规定选择合理的供电电压和供电方式。
- 8.2.3 配电系统云相负荷的不平衡度不宜大于15%。
- 8.2.4 功率因数补偿宜采用在变电所集中补偿,并符合下列规定:
- 1 低压无功补偿装置宜采用部分分相无功功率自动补偿 装置:
  - 2 补偿后功率因数不小于 0.95。
- 8.2.5 供配电系统的谐波治理措施应符合下列规定:
  - 1 居住建筑应在变电所采取滤波或谐波抑制措施;
  - 2 三相配电变压器应采用 D、yn11 接线组别。
- 8.2.6 电气设备节能措施应符合下列规定:
  - 1 电力变压器、电动机、交流接触器产品的能效水平应高于

能效限定值或能效等级3级的要求。

**2** 电梯、自动人行步道等节能运行控制应满足本标准第 4.3.7条的规定。

#### 8.3 照 明

- 8.3.1 照明功率密度限值应符合现行国家标准《建筑节能与可再生能源利用通用规范》GB 55015 的有关规定。
- 8.3.2 建筑物立面夜景照明的照明功率密度(APD)值应符合现行系业标准《城市夜景照明设计规范》JGJ/T163的有关规定。
- **3.3** 照明产品的能效水平应高于能效限定值或能效等级 3 级的要求。
- 8.3.4 光源的选择应符合下列规定:
- 1 灯具安装高度较低的房间宜采用 LED 灯、细管径直管形三基色荧光灯;
- 2 灯具安装高度较高的场所,应按使用要求采用 LED 对金属卤化物灯 高压钠灯或大功率细管径形直管荧光灯:
  - 3 以下场所宜采用发光二极管(LED)灯: 1)走道、楼梯间、卫生间、车库等无人长时间逗留的场所;
    - 2) 疏散指示灯、出口灯、消防应急照明灯具;
    - 3)设备机房、库房和只进行检查、巡视的场所;
    - 4) 更换光源困难的场所。
- 8.3.5 照明灯具及附属装置的选择应符合下列规定:
- 1 在满足眩光限制和配光要求条件下,应选用效率或效能高的灯具,并应符合现行国家标准《建筑照明设计标准》GB 50034 的

#### 有关规定:

灯" , 的触发器、独立式驱动电源应 选用谐波含量低的产品。

- 8.3.6 照明控制应符合下列规定:

,有况及天然采光状况,进行 。间、门厅、电梯厅等公共场所的照明,宜采 。间或就地感应控制;地下车库套设置智能照明控制; 。 17节能控制。 4 景观照明应设置平时、一般节日、重大节日等多种模式自动控制装置。

即川及展展開

### 9 可再生能源利用

#### 9.1 一般规定

- 9.1.1 居住建筑应因地制官利用可再生能源。
- 9.1.2 在确定可再生能源建筑应用设计方案之前、应针对建筑 所处的地理位置、环境条件、可再生资源情况、利用可再生能源 后对环境产生的影响、技术经济性等进行适宜性研究分析,经技术论证通过后方可进行设计。
- 9.1.3 可再生能源系统应与建筑设计同步进行。

#### 9.2 被动式太阳房

- 9.2.1 在冬季日照率太子或等于 70%、冬季供暖期南向平均太阳辐射照度大于或等于 150 W/m² 且最冷月平均气温大于 0°C 的地区,应以被动武太阳能供暖为主、其他主动式供暖系统为辅的方式进行供暖。在冬季日照率大于 55%而小于 70%、冬季供暖期南向平均太阳辐射照度大于或等于 110 W/m² 的地区,宜采用被动式太阳能进行辅助供暖。
- 9.2.2 设计中选用的太阳能集热方式应根据不同地区的气候、技术经济条件及管理维护水平来确定。
- 9.2.3 被动式太阳能供暖方式应根据房间的使用性质选择适宜的集热方式。对主要在白天使用的房间,宜选用直接受益窗或附加阳光间式。对于以夜间使用为主的房间,宜选用具有较大蓄热

能力的集热蓄热墙式。应避免对南向外窗的遮挡,合理确定窗格的划分、窗扇的开启方式与开启方向,减少窗框对窗扇的遮挡。

- 9.2.4 直接受益窗式设计应符合以下规定:
- 1 根据建筑的热工要求,确定合理的窗口面积,采用中空玻璃窗;南向集热窗的窗墙面积比应大于50%;有条件时宜采用屋面天窗集热。
  - 2 窗口应设置夜间活动保温装置。

9.2.5 集热蓄热墙应符合以下规定:

- 1 集热蓄热墙的材料应选择吸收率高、耐久性强的吸热材料,应有较大的热容量和导热系数。
  - 2 集热墙面积与厚度应根据热工计算确定。
- 3 集热蓄热墙应设置通风口。风口的位置应保证气流通畅, 并设置手动开关,便天和常维修与管理。
  - 4 集热蓄热墙的透光罩材料、边框构造应便于清洗和维修。
- 9.2.6 附加阳光间式设计应符合以下规定:
- 1 组织好阳光间内热空气与室内的循环,阳光河与供暖房间之间的公共墙上的开孔率宜大于20%,并设置启闭开关。
- 2 集热面积应进行建筑热工设计计算。合理确定透光玻璃的层数,并进行有效的夜间保温措施。若透光玻璃保温不便时,可将阳光间与供暖房间之间的公共墙按建筑外墙的热工性能进行设计。
  - 3 阳光间进深不宜大于 m。
  - 4 应考虑夏季阳光间的遮阳和通风设计,防止夏季过热。

- 9.2.7 被动太阳能供暖的房间室内应考虑蓄热体的设计,减少室温波动,并满足下列规定: ② >
- 1 应采用成本低、比较客大,且性能稳定、无毒、无害,吸 热放热容易的蓄热材料。
- 2 墙体、地面应来用比热容大的材料,如砖、石、密实混凝土。有条件时底设置专用的水墙或相变材料蓄热。
- **3** 蓄热体应直接接收阳光照射,地面不宜铺设地毯、墙面不 宜挂设地毯等织物。
  - 蓄热体面积宜为3~5倍的集热窗面积。
- 9.2.8 被动太阳能供暖建筑,南向窗墙比及外窗的传热系数应符合表 9.2.8 的规定。当南向窗墙比木符合表 9.2.8 的规定时,应进行计算,保证在冬季通过窗户的太阳得热量大于通过窗户向外散发的热量。

表 9.2.8 被动太阳能供暖南向开窗面积大小及外窗的传热系数限值

| 集热方式 | 冬季日照率                          | 文字 初窗墙面 积比限值 | 外窗传热系数限值/<br>[W/(m <sup>2</sup> ・K)] | 外窗 SHGC 限值 |
|------|--------------------------------|--------------|--------------------------------------|------------|
| 直接   | $ ho_{ m s} \ge 0.70$          | ≥0.50        | €2.2                                 |            |
| 受益式  | 0.70 ≥ p <sub>3</sub> ≥0.55    | ≥0.55        | €2.2                                 | \$ 50.5    |
| 附加阳光 | $\rho_{\rm s} \geqslant 0.70$  | ≥0.60        | ≤4.7                                 | ≥0.5       |
| 间武   | $0.70 > \rho_{\rm s} \ge 0.55$ | ≥0.70        | ≤4.7                                 | ·          |

#### 9.3 主动式太阳能供暖

9.3.1 采用主动式太阳能供暖的建筑,系统热负荷宜通过全年动态负荷计算确定;其辅助热源的热负荷可按稳态计算。

- 9.3.2 主动式太阳能供暖系统类型的选择,应根据所在地区气候、太阳能资源、建筑物类型、建筑物使用功能、业主要求、投资规模、安装条件等因素综合确定。
- 9.3.3 太阳能集热系统设计应符合下列基本规定:
- 1 建筑物上安装太阳能集热系统时,不得对周边现有建筑的日照产生影响;
- **2** 太阳能集热系统管道应选用耐腐蚀和安装连接方便可靠的管材。
- 9.3. 太阳能集热器的安装应符合下列规定:
- ↑ 太阳能集热器安装方位角宜在-20° +20°的朝向范围内; 安装倾角宜选择在当地纬度~当地纬度→25°的范围内。
- 2 放置在建筑外围护结构上的太阳能集热器,在冬至日集 热器采光面上的日照时数应不少于4h,前、后排集热器之间应留 有安装、维护操作的足够问题,排列应整齐有序。
- 3 某一时刻太阳能集热器不被前方障碍物遮挡阳光的日度 间距应按下式计算

 $D = H \times \cot h \times \cos \gamma_0$ 

一前方障碍物的高度 ( m );

h——计算时刻的太阳高度角(°)

- η——计算时刻太阳光线在水平面上的投影线与集热器表面法线在水平面上的投影线之间的夹角(°)。
- - 1 宜按全年动态负荷模拟,经技术经济分析确定;

- 2 太阳能集热效率, 宜考虑集热器表面积灰对集热器效率 的影响。
- 9.3.6 太阳能蓄热系统设计应符合下列基本规定:
  - 太阳能富集地区官采用短期蓄热系统;
- 应根据太阳能集热系统形式、系统性能、系统投资, 负荷和太阳能保证率进行技术经济分析, 选取适宜的蓄热系统;
  - 可利用内围护结构如内墙和地板作为热风供暖蓄热系统。
- 9.3.7 和能集热系统官采用自动控制变流量运行:集热器、贮 热器及供暖供、回水管道等处官设计温度传感器,温度传感器精 度为±2°C,并应能承受系统最高运行温度、集热器的传感器应能 承受最高闷晒温度,贮热水箱和供暖供、回水管道的传感器至少 能承受 100 °C。
- 太阳能供暖系统应根据不同地区和使用条件,采取防冻、 防结露、防过热、防雷、防雹、抗风、抗震和保证电气安全 术措施。
- 9.3.9 太阳能热水供暖系统应根据计算的系统扬程和流量 耐执泵。
- 主场式太阳能热水系统的供回水温度, 9. 3. 10 与热源形式, 经综合比较分析确定。
- 9.3.11 主动式太阳能热风供暖的送回风温度, 宜根据末端形式、 构造及运行方式,综合分析确定。
- 9.3.12 居住建筑设置太阳能热利用系统时,太阳能保证率应符 合表 9.3.12 的规定。 国川港港南

#### 表 9.3.12 不同资源区的太阳能保证率

|          |                       | 1/      |         |
|----------|-----------------------|---------|---------|
| 太阳能资源区划  | 年太阳辐照量                | 太阳能热水系统 | 太阳能供暖系统 |
| 太阳能贝协区和  | $[MJ/(m^2 \gamma a)]$ | 保证率/%   | 保证率/%   |
| I资源丰富区   | ≥6,700                | ≥60     | ≥50     |
| Ⅱ资源较富区   | 5 400 ~ 6 700         | ≥50     | ≥35     |
| Ⅲ资源一般区   | 4 200 ~ 5 400         | ≥40     | ≥30     |
| IV 资源贫乏区 | <4 200                | ≥30     | ≥25     |

#### 9.4 光伏系统

- 9.4.1 光伏系统设计应符合现行国家标准《建筑光伏系统应用技术标准》GB/T 51368 的有关规定。
- 9.4.2 居住建筑宜采用并网型光伏发电系统,应结合电网规划,用电负荷分布和分布式电源规划,按照就近分散接人,就也平衡消纳的原则进行设计。并网型光伏系统接入配电网时应满足《光伏发电系统接入配电网技术规定》GB/T 29319、《光伏发电接入配电网设计规范》GB/T 50865 的相关要求。
- 9.4.4 太阳能光伏系统的设计施工和运维管理应符合现行国家标准《建筑光伏系统应用技术标准》GB/T 51368 的相关规定。
- 9.4.5 应根据光伏组件在设计安装条件下光伏电池最高工作温度设计其安装方式,保证系统安全稳定运行。

9.4.6 太阳能光伏组件的效率参数不应小于表 9.4.6 规定的组件效率限值。太阳能光伏发电系统中的光伏组件设计使用寿命应高于 25 年,系统中多晶硅、单晶硅、薄膜电池组件自系统运行之日起,一年内的衰减率应分别低于 2.5%、3%、5%,之后每年衰减应低于 0.7%。

表 9.4.6 太阳能光伏组件的效率限值(标准状态下)

| 单晶硅矩件 | 多晶硅组件 | 漢獎组件 |
|-------|-------|------|
| 20%   | 17%   | 15%  |

- 9.4.7 太阳能光伏系统与构件及其安装安全,应符合下列规定:
  - 1 应满足结构、电气及防火安全的要求;
- 2 由太阳能光伏电池板构成的围护结构构件,应满足相应 围护结构构件的安全性及功能性要求;
- **3** 安装太阳能光伏系统的建筑,应设置安装和运行维护的安全防护措施,以及防止太阳能光伏电池板损坏后部件坠落伤人的安全防护设施。

#### 9.5 地源热泵系统

- 9.5.1 地源热泵系统方案设计前,应进行工程场地状况调查,并 应对发层地热能资源进行勘察。
- 9.5.2 地埋管换热系统设计前,应根据工程勘察结果评估地埋管换热系统实施的可行性及经济性 1/1
- 9.5.3 地下水换热系统应根据水产地质勘察资料进行设计。必须采用可靠回灌措施,确保置换冷量或热量后的地下水全部回灌到同一含水层,并不得对地下水资源造成浪费及污染。系统投入

运行后,应对抽水量、回灌量及其水质进行定期监测。

- 9.5.4 地埋管换热系统设计应进行全年动态负荷计算,最小计算周期宜为1年。计算周期的,地源热泵系统的总释热量宜与总吸热量相平衡,不平衡率不大于10%(总释热量与总吸热量比值为0.8~1.25)。当总释热量与总吸热量不平衡时,应有冷热源的调节措施。
- 9.5.5 地表水换热系统设计前,应对地表水地源热泵系统运行对水环境的影响进行评估。
- 9.5.6 地源热泵系统的地源侧水系统宜采用变流量设计。

#### 9.6 空气热泵系统

- 9.6.1 空气源热泵机组的有效制热量,应根据室外温度、湿度及结霜、除霜工况对制热性能进行修正。采用空气源多联式热泵机组时,还需根据室内、水机组之间的连接管长和高差修正。
- 9.6.2 当室外设计温度低于空气源热泵机组平衡点温度时,应设置辅助热源
- 9.6.3 空气源热泵机组供暖时,冬季设计工况状态不,寒冷地区冷热风热泵机组制热性能系数(COP)不应小于 2.2、冷热水热泵机组制热性能系数(COP)不应小于 2.4;严寒地区冷热风热泵机组制热性能系数(COP)不应小于 1.8、冷热水热泵机组制热性能系数(COP)不应小于 2.0;在连续制热运行中,融霜所需时间总和不应超过一个连续制热周期的 20%。
- 9.6.4 空气源热泵系统使用时、应采取低温防冻措施,并考虑部分负荷供暖系统运行工况。

型的安装位置,应符合下列热 在径通畅;且避免短路; 小机组受污浊气流的影响; 、对室外机的换热器进行清扫和维修; 企业量为机器。 全外机型应有防积雪和太阳照射措施; 6 应设置安装、维护及防止坠落伤人的安全防护设施。

即加州為民族縣

## 附录 A 四川省主要城市的气候区属、气象 参数、耗热量指标

A. 0.1 根据供暖度日数和空调度日数,结合四川省的地理特征、气候特征、其平均温度等指标将四川省分成高海拔严寒地区、高海拔寒冷地区、夏热冬冷和温和地区四个气候区,如图 A.0.1 所示,各气候区具有以下气候特征:

A 高海拔严寒地区(I),气候特征是冬季严寒、绵长,夏



图 A.0.1 四川省建筑节能设计气候分区图

- 2 高海拔寒冷地区(Ⅱ),气候特征是冬季寒冷,夏季凉爽, 长冬无夏。
  - 3 夏热冬冷地区(广气候特征是冬季冷,夏季炎热。
- 4 温和地区(IV)分为温和A区和温和B区。温和A区的 气候特征是冬季温暖,夏季炎热;温和B区的气候特征是冬季温 暖(部分地区偏冷),夏季凉爽。
- A. 0. 2 四人省主要城市的气象参数应符合表 A.0.2

| <b>A.</b> U | • 4  | KAN.           | 月 土:       | 女姚川     | ロロシー     | 多多          | 安人川               | . 付 百                 | 衣                                                                     | A.0                           | ·724                             | J~ 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ξ A.                                | 0.2-0                               |                                     |
|-------------|------|----------------|------------|---------|----------|-------------|-------------------|-----------------------|-----------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 的规          | 定人   | (2)            |            |         |          |             |                   |                       |                                                                       | <                             | -12                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                     |                                     |
| X           |      | <b>長 A.</b> 0  | .2-1       | 四川省     | 主要       | 城市          | 的建筑               | 筑节制                   | <b>Eit 1</b>                                                          | 声用:                           | 气象                               | 参数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Į                                   |                                     |                                     |
| 气候区         | 地名   | 纬度/<br>(°)     | 经度/<br>(°) | 海拔/m    |          |             | 最热<br>月平均<br>温度   | 最冷<br>月平均<br>温度/<br>℃ | 极端<br>最高度<br>/℃                                                       | 极端<br>最低<br>温度<br>/℃          | 平均<br>大气<br>压/Pa                 | 平均<br>风速/<br>( m/s )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 平均<br>最大<br>风速/<br>(m/s)            | 冬至日<br>正午<br>太阳<br>高度角              |                                     |
|             | 巴塘   | 30.00          | 99.10      | 2 589.2 | 2 100    | 5           | 19/9              | 4.3                   | 38.0                                                                  | -16.0                         | 77 818                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7                                 | 36°44′                              |                                     |
|             | 道孚   | 30.98          | 101.11     | 2 957.2 | 3 599    | No.         | 16.2              | -1.1                  | 34.0                                                                  | -21.7                         | 70 942                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                 | 35°45′                              |                                     |
|             | 稻城   | 29.05          | 100.30     | 3 727.7 | 4 762    | <b>3</b>    | 12.4              | -4.3                  | 32.0                                                                  | -27.6                         | 65 691                           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9                                 | 37°41′                              |                                     |
|             | 德格   | 31.80          | 98.58      | 3 184.0 | 4 088    | 0           | 14.9              | -2.1                  | 35.0                                                                  | -20.2                         | 71 577                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1                                 | 34°56′ \                            | 7                                   |
| 高海          | 甘孜   | 31.61          | 100.00     | 3 393.5 | 4414     | 0           | 14.1              | -3.9                  | 31.1                                                                  | -28.9                         | 72 923                           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5                                 | 3507'                               | 1                                   |
| 拔严          | 红原   | 32.80          | 102.55     | 3 491.6 | 6 036    | 0           | 11.0              | -8.9                  | 31.0                                                                  | -36.0                         | 66 598                           | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5                                 | 33-26.                              | ľ                                   |
|             | 九龙   | 29.00          | 101.50     | 2 987.3 | 3 313    | 0           | 15.4              | 1.3                   | 34.0                                                                  | -16.1                         | 73 598                           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                 | 37°44′                              |                                     |
| 寒冷          | 康定   | 30.05          | 100.96     | 2 615.7 | 3 873    | 0           | 15.8              | -2.0                  | 34.0                                                                  | -24.0                         | 76 740                           | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5                                 | 36°41′                              |                                     |
| 地区          | 马尔康  | 31.90          | 102.23     | 2 664.4 | 3 390    | 0           | 11.8              | -7.4                  | 27.2                                                                  | -25.0                         | 73 4 <i>78</i>                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                   | 34°50′                              |                                     |
|             | 若尔盖  | -8<br>35<br>35 | 102.96     | 3 439.6 | 5 972    | 0           | 11.2              | -9.1                  | 27.0                                                                  | -31.1                         | 69 185                           | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.3                                 | 33°9′                               |                                     |
|             | 色达   | /32/28         | 100.33     | 3 893.9 | 6 352    | 0           | 10.4              | -9.6                  | 29.2                                                                  | -32.8                         | 65 180                           | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9                                 | 34°27′                              |                                     |
|             | 松潘   | 32.65          | 103.56     | 2 850.7 | 4 218    | 0           | 15.0              | -3.4                  | 32.0                                                                  | 24.0                          | 75 894                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7                                 | 34°5′                               |                                     |
|             | 理塘   | 30.00          | 100.27     | 3 949.0 | 5 194    | 0           | 11.0              | -5.3                  | 32.8                                                                  | 30.6                          | 62 956                           | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                 | 36°44′                              |                                     |
|             | 成都   | 30.66          | 104.01     | 506.1   | 1 484    | 58          | 25.7              | 585,                  | 39,5                                                                  | -3.6                          | 95 684                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                   | 36°4′                               |                                     |
|             | 达州   | 31.20          | 107.50     | 344.9   | 1 419    | 187         | 27.7              | (V)                   | 45.0                                                                  | -4.7                          | 97 429                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                 | 35°32′                              |                                     |
| 夏热          | 乐山   | 29.56          | 103.75     | 424.2   | 1 294    | 76          | 26.5              | 7.2                   | 42.8                                                                  | -4.3                          | 96 546                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                 | 37°10′                              |                                     |
| 冬冷          | 泸州   | 28.88          | 105.43     | 334.8   | 1 199    | 161         | 1                 | 7.7                   | 40.3                                                                  | -0.8                          | 97 527                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                 | 37°51′                              |                                     |
| 地区          | 内江   | 29.58          | 105.05     | 347.1   | 1 254    | 148         | ¥ <sub>27.0</sub> | 7.3                   | 41.0                                                                  | -3.0                          | 97 527                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3                                 | 37°9′                               |                                     |
|             | 南充   | 30.78          | 106.10     | 309.3   | 1 345    | 184         | 27.7              | 6.5                   | 41.3                                                                  | -2.6                          | 97 819                           | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7                                 | 35°57′                              | l                                   |
|             | 雅安   | 29.98          | 103.00     | 627.6   | 1 461    | <b>3</b> 54 | 25.5              | 6.4                   | 37.7                                                                  | -3.9                          | 94 355                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                 | 36°45′                              |                                     |
|             | 的规气候 | <b>17</b>      | 特度         | 大東      | 特別 定   株 | 特度          | 表 A.O.2-1 四川省主要城市 | 特度                    | 表 A.O.2-1 四川省主要城市的建筑市自<br>  操機   保険   保険   保険   保険   保険   保険   保険   保 | 表 A.O.2-1 四川省主要城市的建筑节能计<br>地名 | 表 A.O.2-1 四川省主要城市的建筑节能计算用:    地名 | 表 A.O.2-1 四川省主要城市的建筑节能计算用气象 機構 最低 温度 (°) (°) 海拔/m HDD18/ (°C·d) 温度 (°C·d) (°C·d) (°C·d) (°C·d) 温度 (°C·d) (°C·d | 表 A.O.2-1 四川省主要城市的建筑节能计算用气象参数<br>地名 | 表 A.O.2-1 四川省主要城市的建筑节能计算用 気参数    地名 | 表 A.O.2-1 四川省主要城市的建筑节能计算用气象参数    地名 |

|     |          |       |             |            |         |                  |       |                           | W.                    |                  | X <sub>1</sub>  |                  | 1                  |                          |                        |
|-----|----------|-------|-------------|------------|---------|------------------|-------|---------------------------|-----------------------|------------------|-----------------|------------------|--------------------|--------------------------|------------------------|
|     |          | T     |             | <b>T</b>   |         |                  | \<br> | X                         | `                     |                  |                 |                  |                    | 续表                       |                        |
|     | 气候区      | 地名    | 纬度/<br>(°)  | 经度/<br>(°) | 海拔/m    | HDD18/<br>(°℃•d) | CDD26 | 最热<br>月平均<br>温度/<br>℃     | 最冷<br>月平均<br>温度/<br>℃ | 极端<br>最高<br>温 /℃ | 极端<br>最低度<br>/℃ | 平均<br>大气<br>压/Pa | 平均<br>风速/<br>(m/s) | 平均<br>最大<br>风速/<br>(m/s) | 冬至日<br>正午<br>太阳<br>高度角 |
|     |          | 绵阳    | 31.47       | 104.68     | 471.0   | 1 486            | 53    | 26.5                      | 5.6                   | 37.0             | -7.3            | 95 998           | 1.1                | _                        | 35°15′                 |
|     | 夏热冬冷地区   | 宜宾    | 28.80       | 104.60     | 34).0   | 1 044            | 107   | 27.1                      | 8.6                   | 39.5             | -3.0            | 97 472           | 0.7                | 3.3                      | 37°56′                 |
|     | 冬冷山      | 自贡    | 29.21       | 104.41     | 3,54.9  | 1 121            | 134   | 27.1                      | 8.2                   | 40.0             | -2.8            | 97 499           | 1.6                | 3.6                      | 37€31′                 |
|     | 区        | 石棉    | 28.51       | 101.78     | 2 325.8 | 1 227            | 53    | 24.7                      | 8.6                   | 37.3             | -5.3            | 84 613           | 1.6                | 8.6                      | 35°9′                  |
|     |          | 汉源    | - X         | 102.26     | 2 100.8 | 1 085            | 60    | 25.1                      | 9.7                   | 38.7             |                 | 83 892           | 1/2/               | >3.7                     | 35°24′                 |
|     | 温和       | 攀枝花   | 4 /\/\      | 101.72     | 1 190.1 | 414              | 80    | 26.2                      | 11.7                  | 40.4             |                 | 88 560           | 1.5/               | 3.7                      | 40°9′                  |
|     | 地区       | 会理    | K-V         | 102.25     | 1 787.1 | 1 340            | 2     | 21.2                      | 7.9                   | 39.0             | $\wedge$        | 83 <b>9</b> 01   | 1.6                | 4                        | 40°5′                  |
|     |          | 2000月 | 27.90       | 102.26     | 1 590.9 | 1 034            | 18    | 22.7                      | 9.8                   | 37.1             | -5.9            | 85 715           | 1.5                | 3.8                      | 36°44′                 |
| าร์ | 1        | 当所在   | <b>主城市没</b> | 有气象        | \$参数时   | ,可选              | 取临近   | î且在                       | 司一条                   | 候区               | 的其              | 他城市              | 市进行                | 亍计算                      | F <sub>o</sub>         |
| 1/2 | <u>`</u> |       |             | 表          | A.0.2-  | 2 冬              | 季平:   | 均太顺                       | 日辐身                   | 照月               | 变               |                  | 单位                 | í: W                     | //m <sup>2</sup>       |
|     | 气候       | 区     | 地名          | 기          | k平面     |                  | 东向    | $\langle \langle \rangle$ | 南向                    |                  |                 | 西向               |                    | 4                        | 比向                     |
| V.  |          |       | 甘孜          |            | 162.8   |                  | 109.3 | H,                        | 233.4                 |                  |                 | 113.6            | 5                  | 3                        | 8.5                    |
| i   |          | 1 -   |             |            |         | -                | /N/v= | –                         |                       |                  | 1               |                  |                    | _                        |                        |

|        |      |           |       | / / / / |       |        |
|--------|------|-----------|-------|---------|-------|--------|
| 气候区    | 地名   | 水平面       | 东向    | 南向      | 西向    | 北向     |
|        | 甘孜   | 162.8     | 109.3 | 233.4   | 113.6 | 38.5   |
| 高海拔    | 红原   | 157.2     | CITY! | 245.6   | 111.9 | 31.2   |
| 严寒、    | 九龙   | 134.6     | 86.6  | 168.4   | 94.7  | 42.6   |
| 寒冷地    | 理塘   | 178.7     | 118.3 | 248.6   | 122.8 | 38:8[] |
| 区      | 马尔康  | 145.5     | 97.2  | 204.7   | 103.2 | 38.9   |
|        | 松潘   | 131.6     | 88.0  | 182.0   | 95.5  | 41.6   |
|        | 成都人  | 58.5      | 40.3  | 68.2    | 43.2  | 27.3   |
|        | 乐的   | 54.3      | 39.7  | 61.0    | 739.6 | 27.1   |
|        | 美术   | 48.6      | 40.6  | 61.2    | 40.6  | 19.9   |
| 夏热冬冷地区 | * 绵阳 | 62.4      | 48.2  | 81.2    | 48.2  | 25.1   |
|        | 南充   | 53.8      | 36.5  | 6331    | 39.6  | 24.3   |
|        | 万源   | 76.8      | 56.4  | 91.9    | 56.3  | 36.2   |
|        | 宜宾   | 53.1      | 36.6  | 59.8    | 39.5  | 25.0   |
| NH TH  | 西昌   | 166.8     | 107.4 | 211.7   | 114.3 | 42.3   |
| 温和地区   | 会理   | 163.3     | 104.4 | 200.1   | 110.8 | 41.6   |
|        | 攀枝花  | 194.7     | 123.3 | 218.8   | 123.4 | 73.2   |
| 48     |      | (I)   (I) | 7     |         |       |        |
|        |      | V         |       |         |       |        |

表 **A.0.2-3** 夏季平均太阳辐射照度 单位: W/m<sup>2</sup>

|               |      |        |         | /     |         |       |
|---------------|------|--------|---------|-------|---------|-------|
| 气候区           | 地名   | 水平面    | 林       | 南向    | 西向      | 北向    |
|               | 甘孜   | 247.0  | 155.4   | 115.0 | 157.4   | 97.0  |
| 高海拔           | 红原   | 233.9  | 154.6   | 97.4  | 154.6   | 87.3  |
| 严寒、           | 九龙   | 183.91 | 120.1   | 93.1  | 122.5   | 86.2  |
| 寒冷            | 理塘   | 242.1  | 151.2   | 106.5 | 153.4   | 195.9 |
| 地区            | 马尔康  | 233.2  | 146.9   | 109.3 | 150.4   | 92.5  |
|               | 松潘   | 222.3  | 144.6   | 116.3 | 148.8   | 97.5  |
| 2/            | 成都   | 165.1  | 109.4   | 87.4  | N1.9    | 77.3  |
| XX            | ) 乐山 | 149.9  | 98.7    | 74.5  | 7 105.8 | 69.3  |
| 21. 6         | 泸州   | 168.5  | 118.2   | -68.1 | 118.2   | 71.1  |
| 复热冬<br>冷地区    | 绵阳   | 161.3  | 113.8   | 82.6  | 113.8   | 75.6  |
|               | 南充   | 174.4  | 112.2   | 85.7  | 116.2   | 74.0  |
|               | 万源   | 177.5  | XX6.017 | 87.9  | 123.3   | 76.8  |
|               | 宜宾   | 157.5  | 103.7   | 82.3  | 108.1   | 74.6  |
| 7 <u>0</u> fr | 西昌   | 201.5  | 128.6   | 91.9  | 132.0   | 88.5  |
| 温和<br>地区      | 会理   | 196.3  | 125.6   | 88.9  | 128.9   | 88.9  |
|               | 攀枝花  | 178.6  | 103.6   | 72.6  | 104.1   | 70.3  |

表 A.0.2-4 最冷月平均太阳辐射照度 单位: W/m<sup>2</sup>

|     | _ \ \/ \> |       |       |       | 17/7. |      |  |  |
|-----|-----------|-------|-------|-------|-------|------|--|--|
| 气候区 | 地名        | 水平面   | 东向    | 南向    | スト動向  | 北向   |  |  |
| 高海拔 | 甘孜        | 149.3 | 98.3  | 229.7 | 109.6 | 35.3 |  |  |
|     | 红原        | 152.3 | 108.2 | 280.2 | 108.2 | 29.4 |  |  |
| 严寒、 | 九龙        | 126.7 | 80.0  | 169.3 | 94.8  | 40.4 |  |  |
| 寒冷  | 理塘        | 174.2 | 114.9 | 262.7 | 127.4 | 36.4 |  |  |
| 地区  | 马尔康       | 138.9 | 92.7  | 208.7 | 99.0  | 36.6 |  |  |
|     | 松潘        | 125.8 | 83.3  | 183.1 | 89.3  | 38.9 |  |  |
|     |           |       |       |       |       |      |  |  |

|            |                 |       | 11          |       | :       | 续表   |  |  |  |  |  |
|------------|-----------------|-------|-------------|-------|---------|------|--|--|--|--|--|
| 气候区        | 地名              | 水平面   | <b>茶館</b> 。 | 南向    | 西向      | 北向   |  |  |  |  |  |
|            | 成都              | 59.9  | 40.9        | 71.8  | 43.3    | 28.2 |  |  |  |  |  |
|            | 乐山              | 54.5  | 41.0        | 63.6  | 38.6    | 27.2 |  |  |  |  |  |
| 百世々        | 泸州              | 46.9  | 41.1        | 64.1  | 41.1    | 187  |  |  |  |  |  |
| 夏热冬<br>冷地区 | 绵阳              | 63.9  | 47.9        | 87.1  | 47.9    | 24.6 |  |  |  |  |  |
| .,,,,      | 南充              | 52.8  | 35.3        | 64.4  | 37.1    | 23.0 |  |  |  |  |  |
|            | 万源              | 71.7  | 53.2        | 92.1  | 52.2    | 31.6 |  |  |  |  |  |
|            | (多多)            | 47.8  | 33.0        | 55.5  | 35.1    | 23.0 |  |  |  |  |  |
| 3FI III    | 西昌              | 166.0 | 107.2       | 227.3 | 118.6   | 40.8 |  |  |  |  |  |
| 温和         | <sup>)</sup> 会理 | 149.4 | 96.3        | 198.0 | 7 108.0 | 39.1 |  |  |  |  |  |
|            | 攀枝花             | 234.6 | 147.4       | 275.4 | 147.3   | 86.1 |  |  |  |  |  |

# 表 A.0.2-5 最热月平均太阳辐射照度

单位: W/m<sup>2</sup>

|                        |     |       |         | 1     |       |         |
|------------------------|-----|-------|---------|-------|-------|---------|
| 气候区                    | 地名  | 水平面   | 东向      | 南向    | 西向    | 北向      |
| 高海拔<br>严寒、<br>寒冷<br>地区 | 甘孜  | 250.1 | 1523    | 104.9 | 156.4 | 95.7    |
|                        | 红原  | 237.8 | 147.9   | 90.7  | 147.9 | 87.3    |
|                        | 九龙  | 184.3 | / 119.2 | 90.8  | 123.3 | 89.0    |
|                        | 理塘  | 237.1 | 145.9   | 101.7 | 150.9 | 97.6    |
|                        | 马尔康 | 232.9 | 145.3   | 105.0 | 150.3 | 95.5    |
|                        | 松潘  | 224.7 | 145.6   | 112.8 | 149.9 | 7 101.6 |
|                        | 成都  | 170.0 | 112.7   | 88.8  | 115.7 | 84.0    |
|                        | 新的  | 153.7 | 102.0   | 76.2  | 108.8 | 75.5    |
|                        | 沙州  | 182.9 | 125.4   | 68.2  | 125.4 | 78.9    |
| 夏热多                    | 绵阳  | 171.9 | 115.2   | 80.8  | 115.2 | 78.1    |
| 冷地区                    | 南充  | 181.0 | 117.0   | 87.5  | 121.6 | 81.8    |
|                        | 万源  | 186.7 | 118.3   | 83.8  | 126.9 | 78.8    |
|                        | 宜宾  | 159.0 | 103.6   | 78.1  | 107.9 | 77.4    |
| 温和地区                   | 西昌  | 211.2 | 132.0   | 89.0  | 136.7 | 94.2    |
|                        | 会理  | 192.7 | 128.4   | 85.4  | 127.1 | 91.6    |
|                        | 攀枝花 | 211.3 | 121.8   | 80.8  | 122.9 | 85.1    |
| 50                     | <   |       | /       |       |       |         |

# 张潮游· 表 A.0.2-6 高海拔严寒、寒冷地区供暖期平均温度和太阳辐射平均照度

|     |      |       |                      |     |    |     | 1.1 | /      |           |     |     |     |     |                          |     |
|-----|------|-------|----------------------|-----|----|-----|-----|--------|-----------|-----|-----|-----|-----|--------------------------|-----|
|     | 供暖期  | 需供暖   | 太阳总辐射平均照度/           |     |    |     |     | 太阳总辐射平 |           |     |     |     | 頁度/ |                          |     |
|     |      |       | ( W/m <sup>3</sup> / |     |    |     | 供暖期 | 需供     | $(W/m^2)$ |     |     |     |     |                          |     |
| 城市  | 半均   | 天数    | 水                    | 南   |    | 东   | 西   | 城市     | 平均        | 暖天  | 水   | 南   | 北   | 东                        | 西   |
|     | 温度/℃ |       | 平元                   | 領   | 向  | 西   | 向   |        | 温度/℃      | 数   | 平   | 向   | 向   | 西、                       | 向   |
|     |      |       | 面                    | ()  | ′  |     |     |        |           |     | 面   |     |     | $\langle \times \rangle$ |     |
| 若尔盖 | -2.9 | 227 / | 161                  | 142 | 47 | 83  | 82  | 甘孜     | -0.2      | 173 | 162 | 163 | 52/ | 93                       | 93  |
| 松潘  | -0.1 | 167   | 136                  | 132 | 41 | 71  | 70  | 康定     | 0.6       | 141 | 119 | ĮŅ, | 37  | 61                       | 62  |
| 色达  | -3.8 | 228   | 166                  | 154 | 53 | 97  | 94  | 巴塘     | 3.8       | 50  | 167 | 154 | 50  | 86                       | 90  |
| 马尔康 | 1.3  | 115   | 137                  | 139 | 43 | 72  | 73  | 理塘     | -1.2      | 188 | 149 | 156 | 49  | 79                       | 81  |
| 德格  | 0.8  | 156   | 125                  | 119 | 37 | 64  | 63  | 稻城     | Ţ999      | 177 | 173 | 175 | 60  | 104                      | 109 |
| 红原  | -2.2 | 229   | 157                  | 245 | 31 | 112 | 112 | 九龙     | 2.1       | 105 | 135 | 168 | 43  | 87                       | 94  |
| 道孚  | 0.8  | 136   | 119                  | 117 | 37 | 61  | 62  | S      |           |     |     |     |     |                          |     |

A. 0. 3 标准工况下,四川省各类新建居住建筑供暖与供冷平均能耗指标应符合表 A.0.3 的规定。 表 A.0.3 各类新建居住建筑平均能耗指标

|                 |     | $\sim\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | A 7 A                        |
|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
| 热工区划            |     | 供暖耗热量/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 供暖耗电量/                        | 供冷耗更量                        |
|                 | ~ X | $MJ/(m^2 \cdot a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[kW \cdot h/ (m^2 \cdot a)]$ | $[kW \cdot h/(m^2 \cdot a)]$ |
|                 | AM  | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | \$ 5 P                       |
| 高海拔             | B⊠  | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , X                           |                              |
|                 | C 🗵 | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                              |
| 高海拔             | A区  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                              |
| 寒冷地区            | B区  | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 7.1                          |
| 夏热冬冷地区          | A区  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9                           | 10.0                         |
| <b>支</b> 然や1マ地区 | B区  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                           | 12.5                         |
| 温和地区            | A区  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4                           |                              |
|                 |     | IN THE STATE OF TH |                               | 51                           |
|                 | V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                              |

## 附录 B 外墙平均传热系数和热当量体形 系数计算方法

外墙的传热系数应为包括结构性热桥在内的平均 B. 0. 1 数,并应按下式计算:

了 市元墙体的平均传热系数应按下式计算

$$K_{\rm m} = K + \frac{\sum \psi_j l_j}{A} \qquad (B.0.1-1)$$

 $K_{m}$  — 単元墙体的平均传热系数[W ( $m^{2}$ ・K)]; K — 単元墙体的主断面传热系数[W/( $m^{2}$ ・K)];

·单元墙体上的第 j 个结构性热桥的线传热系数

 $[W/(m \cdot K)]$ 

 $l_i$ ——单元墙体第 $j_i$ 介结构性热桥的计算长度(m);

-单元墙体的面积(m²)。

在建筑外围护结构中,墙角、窗间墙、凸窗、阳台、 楼板、地板等处形成的热桥称为结构性热桥(参见图 B.O.1-1 结构性热桥对墙体、屋面传热的影响利用线性传热系数。来描述。

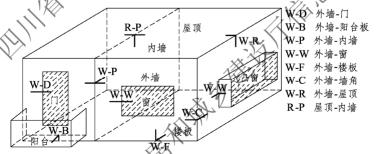



图 B.0.1-1

3 墙面典型的热桥如图 B.0 (1-2) 所示,外墙平均传热系数  $K_m$  应按下式计算:

$$K_{\rm m} = K + \frac{\psi_{\rm W-P} H + \psi_{\rm W-F} B + \psi_{\rm W-C} W}{A} + \frac{\psi_{\rm W-R} B + \psi_{\rm W-W_L} h + \psi_{\rm W-W_B} b + \psi_{\rm W-W_R} h + \psi_{\rm W-W_U} b}{A}$$

(B.0.2-2)

式中 Ww-P——外墙和内墙交接形成的热桥的线性传热系数

 $[W/(m \cdot K)];$ 

www.hymbhateneway.

[W/( $m \cdot K$ )];

 $\psi_{W-C}$ ——外墙墙角形成的热桥的线性传热系数[ $W/(m\cdot K)$ ];

ΨW-R——外墙和屋顶交接形成的热体的线性传热系数

[W/ $(m \cdot K)$ ];

₩-wL — 外墙和左侧窗框交接形成的热桥的线性传热系数[W/(m, ※K, )];

Ψ<sub>W-W<sub>B</sub></sub> ——外墙和床边窗框交接形成的热桥的线性传热系

数[WX(m·K)];

Ψ<sub>W-W<sub>R</sub></sub> —— 外墙和右侧窗框交接形成的热桥的线性传热系

数[W/(m·K)];

vww.——外墙和上边窗框交接形成的热桥的线性传热系

数[W/(m·K)]。

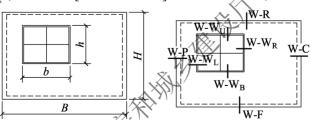



图 B.0.1-2 墙面典型结构性热桥示意图

4 热桥线性传热 Ψ应按下式计算:

$$\psi = \frac{Q^{2D} - KA(t_{0} - t_{e})}{l(t_{n} - t_{e})} = \frac{Q^{2D}}{l(t_{n} - t_{e})} - KB$$
 (B.0.1-3)

式中 A——以热桥为一边的某一块矩形墙体的面积  $(m^2)$ ,

l——热桥的长度(m), 计算 $\psi$ 时通常取 1 m;

B——该块矩形另一条边的长度即  $A=l\cdot B$ ,一般情况下  $B \ge$ 

-流过该块墙体的热流(W),该块墙体沿着热桥的长度东京是物名的。热流可以担保实的横截两(纵京

度方向是均匀的,热流可以根据它的横截面(纵向 热桥)或纵截面(横向热桥)通过二维传热计算得到;

K——墙体主断面的传热系数[W/( $m^2 \cdot K$ )];

tn——墙体室内侧的空气温度(K);

te——墙体室外侧的空气温度(K)。

5 计算  $Q^{2D}$  时墙面典型结构性热桥的截面如图 B.0.1-3 所示

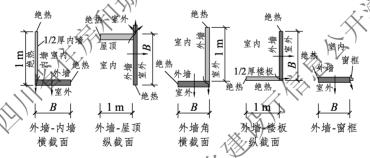



图 B.0.1-3 墙面典型结构性热桥截面示意图

6 墙面上平行热桥之间的距离很小,如图 B.0.1-4 所示,计算  $Q^{2D}$  用截面上的尺寸 B 远小于 1 m 时,可以一次同时计算平行

热桥的线性传热系数之和。

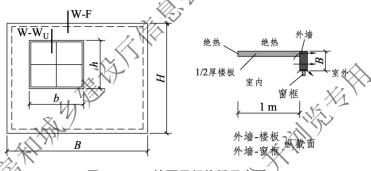
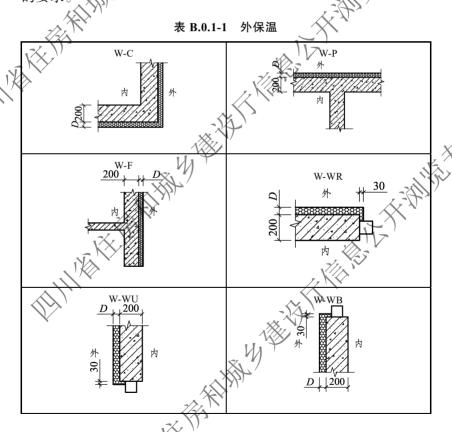
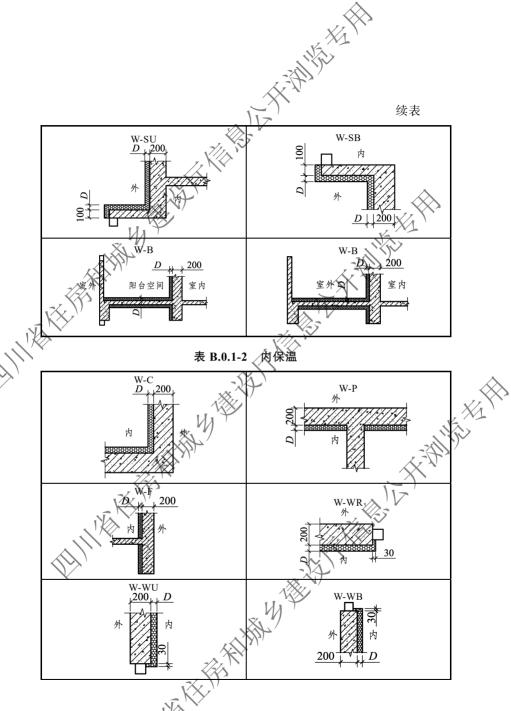
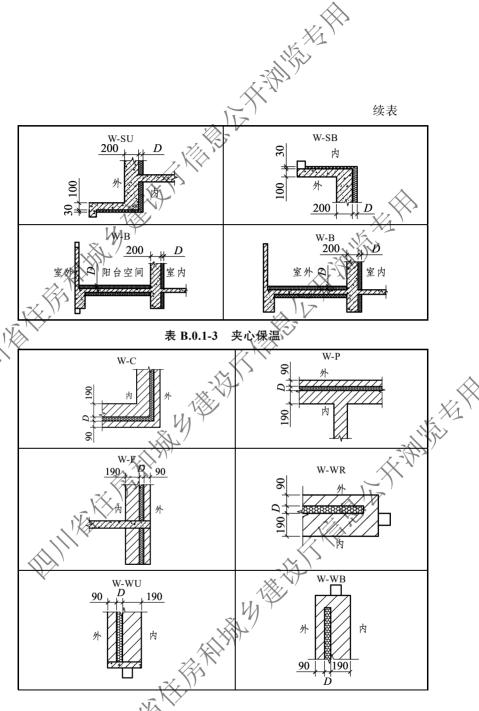
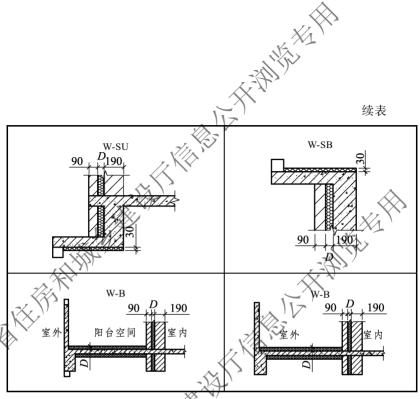



图 B.0.1-4 墙面平行热桥示意图


图 B.0.1-4 为计算外墙楼板+外墙窗框铭构性热桥线性传热系 效示意图,即可按下式计算:


$$\psi_{W-F} + \psi_{W-Wu} = \frac{Q^{2D} - KA(t_n + t_e)}{l(t_n + t_e)} = \frac{Q^{2D}}{l(t_n - t_e)} - KB \quad (B.0.1-4)$$


- 7 线性传热系数 可以利用本标准审定通过的二维稳态传热计算软件计算。 当窗面的实际尺寸、材料和构造与表 B.0.1-3 中的示例相同时,也可以直接引用表中给出的数值。
- 8 外保温墙体外墙和内墙交接形成的热桥的线性传热系数  $\psi_{W-P}$  外牆和楼板交接形成的热桥的线性传热系数  $\psi_{W-F}$  、外墙墙角形成的热桥的线性传热系数  $\psi_{W-C}$  都可以近似取 0。
- 9 一栋建筑的某一面外墙(或全部外墙)的平均传热系数,可以先计算各个不同单元墙的平均传热系数,然后再依据面积加权的原则来计算。当某一面外墙(或全部外墙)的主断面传热系数 *K* 都一致时,也可以直接计算某一面外墙(或全部外墙)的平均传热系数,这时式中的 4 是某一面外墙(或全部外墙)的面积,


式中的 $\Sigma \psi l$  是某一面外墙(或全部外墙)的面积全部结构性热桥的线传热系数和长度乘积之和

10 一般情况下,单大屋顶的平均传热系数等于其主断面的传热系数。当屋顶出现明显的结构性冷桥时,屋顶平均传热系数的计算方法与墙体平均传热系数的计算方法相同,也要用式(B.0.1)计算。 外墙常用保温构造形式应符合表 B.0.1-1。B.0.1-3的要求。

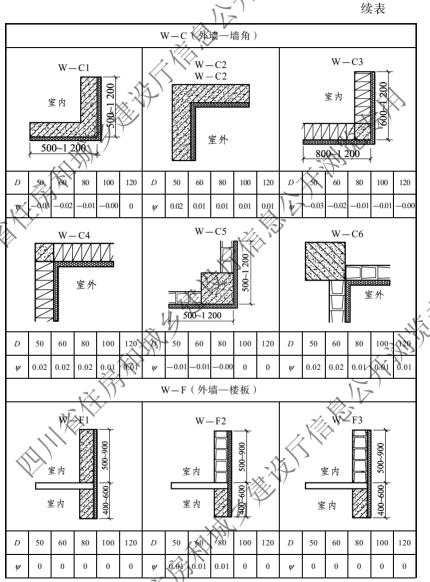








线传热系数 ¥ 参考值应符合表 B.0.1-4 的相关要求。 11


### 线传热系数ψ参考值

|                                                                              | - 7 |
|------------------------------------------------------------------------------|-----|
| 图例说明                                                                         |     |
| 到 新 混凝土梁 (柱、墙体) 多 孔砖 (空心砖) 墙体 240 mm 200 mm 厚, 导热系数 1.74 370 mm 厚, 导热系数 0.58 |     |
| 钢筋混凝土楼板100 mm厚, 混凝土空心砌块墙体190 mm 导热系数1.74 (为了区别方 厚, 当量导热系数1.16 便单独图示说明)       |     |
| 聚苯板保温层 D mm厚,导 各种轻集料混凝土空心砌块墙位 热系数 0.042 190 mm厚,当量导热系数 0.53                  | Z   |
| □ 铝合金中空窗框 100 mm厚, 传放系数 5.5, 当量导热系数 3.14                                     |     |
|                                                                              |     |
|                                                                              | 59  |
|                                                                              |     |

上大潮水流

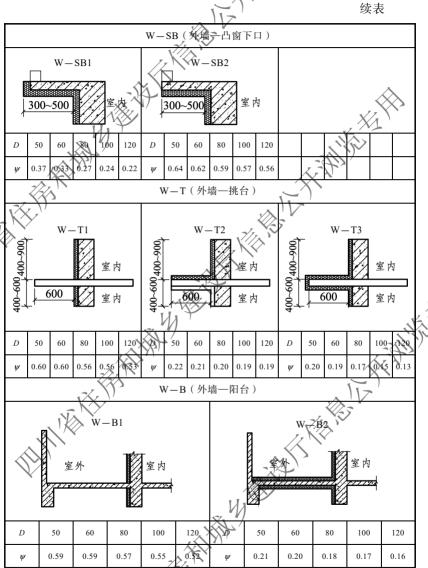
|     |   |             |          |          |               |                |            |           |           | 117          | X\   |            |         |      |             | 绫                                            | 表                 |             |      |
|-----|---|-------------|----------|----------|---------------|----------------|------------|-----------|-----------|--------------|------|------------|---------|------|-------------|----------------------------------------------|-------------------|-------------|------|
|     |   |             |          |          |               |                | 7          | V – R     | (A)       | 墙—)          | 屋顶 ) | )          |         |      |             |                                              |                   |             |      |
|     |   |             | W-       | -R1      |               |                | /          | X         | W-        | - R2         |      |            |         |      | W-          | -R3                                          |                   |             |      |
|     |   |             |          |          |               | 5              |            | >         | 000000000 | 2000000000   |      |            | 1006000 |      | 80808088080 | 80000000000000                               | Πz                | `           |      |
|     |   | 室内          | · ·      |          |               |                |            | 888888888 | //        | 1            |      | 400~600    |         | 室内   |             | X                                            |                   |             |      |
|     |   |             | <b>E</b> |          | 1):           | <del>4</del> 1 |            | 室内        |           |              |      | 400        |         |      |             |                                              | 40                | <u> </u>    |      |
|     | D | 50 /        |          | 80       | 100           | 120            | D          | 50        | 60        | 80           | 100  | 120        | D       | 50   | 60          | 80                                           | 100               | 120         |      |
|     | Ψ | 0.47        | 0.47     | 0.47     | 0.45          | 0.44           | ψ          | 0.28      | 0.28      | 0.26         | 0.25 | 0.24       | 17      | 0.27 | 0.26        | 0.24                                         | 0.22              | 0.21        |      |
| N   | K | <b>&gt;</b> | ***      |          |               |                |            |           |           |              | √,   |            | 7       |      | W –         | -R6                                          | ्रो               |             |      |
|     |   |             | W -      | - R4     | <b>=</b>      | 3              |            |           | W-        | - R5         |      | ो          |         |      |             |                                              | 400~600 600~1 000 |             |      |
| 117 |   | 室戶          | h Z      |          | 9             | 400~60(        |            | 室内        |           |              | 3    | 400~600    |         |      |             | - <u>-                                  </u> | 09 00             |             |      |
|     |   |             | 12       | <b>1</b> | -             | 4              |            | V         |           | 28           |      | <u>4</u> † |         | 室    | 内           |                                              | 400~6             |             |      |
|     | D | 50          | 60       | 80       | 100           | 120            | Sel        | 50        | 60        | 80           | 100  | 120        | D       | 50   | 60          | 80                                           | 100               | 120         | S. V |
|     | Ψ | 0.47        | 0.47     | 0.47     | 0.45          | 0.34           | Y W        | 0.27      | 0.26      | 0.23         | 0.21 | 0.19       | Ψ       | 0.69 | 0.69        | 0.68                                         | 0.67              | 0.65        |      |
|     |   |             | W-       | -R7      |               | 3              |            | •         |           |              | •    |            |         |      |             | 117                                          |                   | ·           |      |
|     |   |             | Νĺ       |          | ~1 000        |                |            |           | W-        | - R8         |      |            |         | √r   |             | - R9⁄                                        |                   |             |      |
|     |   |             |          |          | 009 00        | _              |            |           |           |              |      |            |         |      |             |                                              |                   |             |      |
|     |   |             | 室内       |          | 400~600 600~1 |                | ₹          |           | 室         | 内            | /*   | <b>)</b>   | J. 8    |      | 室           | — <b>、</b><br>内                              | 18                | <b>&gt;</b> |      |
|     |   | •           |          | 22       | <b>1 1</b>    | -              |            |           |           |              | 1    | <u></u>    | 4/      |      |             |                                              |                   |             |      |
|     | D | 50          | 60       | 80       | 100           | 120            | D          | 50        | 60        | 80           | Ingo | 120        | D       | 50   | 60          | 80                                           | 100               | 120         |      |
|     | Ψ | 0.37        | 0.36     | 0.33     | 0.30          | 0.28           | Ψ          | 0.97      | 0.96      | <b>9.9</b> 5 | 0.92 | 0.89       | Ψ       | 0.12 | 0.10        | 0.07                                         | 0.05              | 0.04        |      |
|     |   |             |          |          |               |                | - 7        | <b>*</b>  | 7         |              |      |            |         |      |             |                                              |                   |             |      |
|     |   |             |          |          |               | Ñ              | K          | \\\'      |           |              |      |            |         |      |             |                                              |                   |             |      |
|     | 6 | 0           |          |          | 1             | \\X            | $\Diamond$ |           |           |              |      |            |         |      |             |                                              |                   |             |      |
|     |   |             |          |          | 17            | ١              |            | 0.97      |           |              |      |            |         |      |             |                                              |                   |             |      |
|     |   |             |          |          | 1             |                |            |           |           |              |      |            |         |      |             |                                              |                   |             |      |

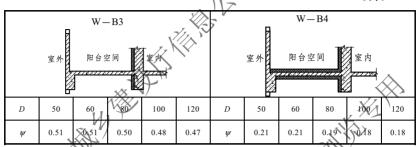
曹——唐伯)



上作剂推推

|      |    |        |      |              |                   |              |          |                |              | 117            | <b>(</b> ) '    |            |      |            |          | 绫            | 表      |           |   |
|------|----|--------|------|--------------|-------------------|--------------|----------|----------------|--------------|----------------|-----------------|------------|------|------------|----------|--------------|--------|-----------|---|
|      |    |        |      |              |                   |              | W-       | FW (           | 外墙           | <del>)</del> 过 | 街楼              | 板)         |      |            |          |              |        |           |   |
|      |    |        | W-   | FW1          | 006               | . <          | <u> </u> | , (?           | W-           | FW2            | 006             | -          |      |            | W-       | FW3          | 000    |           |   |
|      | 1  | 888888 |      |              | 400~600 500~900   |              | 7        | 室室             | 20:0:0:0:0:0 |                | 400~600 500~900 | -          | 8    | 室室室        | 内外       |              | )X>009 |           |   |
|      | D  | 50     | No.  | 80           | 100               | 120          | D        | 50             | 60           | 80             | 100             | 120        | D /  | 36         | 60       | 80           | 100    | 120       |   |
|      | ** | 0.64   | 0.64 | 0.64         | 0.63              | 0.61         | Ψ        | 0.35           | 0.33         |                |                 | 0.26       | 147  | 0.12       | 0.11     | 0.09         | 0.08   | 0.07      |   |
| , VX | >  |        |      |              |                   |              | W        | -P (           |              |                | <del>\</del>    |            | >    |            |          |              |        |           |   |
|      |    |        | W −  | −P1<br>500~9 | 900               | <del>/</del> |          |                | W –          | -P2<br>00~9    | 00              | Υ          |      |            | W-       | −P3<br>500~9 | 900    |           |   |
| 15   | 7. |        |      |              | 888 88            | <u>.</u>     |          |                |              |                |                 |            |      |            |          |              |        |           |   |
|      | -  |        |      | 室            | r <del>l</del> tı | •            | I        | As             |              | 室片             | <u> </u>        |            |      | 2          |          |              | 四      | . 1       | 4 |
|      |    |        | Щ    | 至            | N                 | , >          | 17       | <u></u>        |              |                | •               |            |      |            |          |              |        | $II_{II}$ | Ñ |
|      |    | l      | Ш    | 1            | /                 |              | 31,      | 1              | 22.2         |                | 1               | ı          |      | 1          | للسا     |              |        | ナ         |   |
|      | D  | 50     | 60   | 80           | (00)              | 120          | D        | 50             | 60           | 80             | 100             | 120        | D    | 50         | 60       | 180-         | 1)00   | 120       |   |
|      | Ψ  | 0      | 1    | Je.          | <b>&gt;</b> 0     | 0            | Ψ        | 0              | 0            | 0              | 0               | 0          | Ψ    | 0.02       | 0.01     | 0.01         | 0.01   | 0         |   |
|      |    | 11     | //×  | <u> </u>     |                   |              | W-       | WR (           |              |                | 左右              | 口)         | /    | <u> </u>   | <u> </u> |              |        |           |   |
|      |    |        | W–   | WR1          | <b>**</b>         |              |          | 777            | W–           | WR2            | <b>3</b>        | -\$        | \$\) | )<br> <br> | W–       | WR3          | 7      |           |   |
|      |    |        | //   | ///          |                   | 1            |          |                |              | //             |                 | <b>%</b> ) | 1/   |            | //       | //           |        |           |   |
|      |    |        | 室    | 内            |                   |              |          |                | 室            | 内              | 11)             | 1          |      | 1          | 室        | 内            |        |           |   |
|      | D  | 50     | 60   | 80           | 100               | 120          | D        | 50             | 69           | 3897           | 100             | 120        | D    | 50         | 60       | 80           | 100    | 120       |   |
|      | Ψ  | 0.43   | 0.44 |              | 0.48              |              | Ψ        | 0.10           | 0.10         | 0.11           | 0.12            | 0.13       | Ψ    | 0.61       | 0.63     | 0.66         | 0.68   | 0.70      |   |
|      |    |        |      |              |                   |              | X        | <i>&gt;</i> // |              |                |                 |            |      |            |          |              |        |           |   |
|      | 6  | 2      |      |              | . \               | 1%           | > `      |                |              |                |                 |            |      |            |          |              |        |           |   |
|      |    |        |      |              |                   | 11           |          |                |              |                |                 |            |      |            |          |              |        |           |   |
|      |    |        |      |              | $\bigvee$         |              |          |                |              |                |                 |            |      |            |          |              |        |           |   |


上下流流流


|    |   |               |      |      |      |      |    |                |            | 117            | <u></u> |      |                      |      |      | 续     | 表    |      |     |
|----|---|---------------|------|------|------|------|----|----------------|------------|----------------|---------|------|----------------------|------|------|-------|------|------|-----|
|    |   |               |      |      |      |      | W- | WR             | (外增        | <del>了</del> 窗 | 左右      | 口)   |                      |      |      |       |      |      |     |
|    |   |               |      | WR4  |      | ]-(  |    |                | <b>N</b> — |                |         |      |                      |      | W-   | WR6   |      |      |     |
|    | D | 50            | 60 . | Sa.  | 100  | 120  | D  | 50             | 60         | 80             | 100     | 120  | D                    | 50   | 至    | 内公    | 100  | 120  |     |
|    | ψ | 0.09          | 6.10 | 0.10 | 0.11 | 0.11 | ψ  | 0.13           | -          |                |         |      | Ψ                    | 0.67 | 0168 | 0.70  | 0.71 | 0.72 |     |
|    | , | <b>***</b>    | Ki   |      |      |      |    |                |            |                | 窗上      |      | 1.                   | X    |      |       |      |      |     |
| νĨ | K | <del>//</del> | W_   | WU1  |      |      |    |                | w_         | WU2            |         |      | <del>     </del>   5 |      | W-   | WII3  |      |      |     |
|    | ` |               |      |      | 室内   |      |    |                |            | W 02           | 室内      |      |                      |      |      | /     | 室内   | '/   |     |
|    | D | 50            | 60   | 80   | 100  | 120  | 19 | 50             | 60         | 80             | 100     | 120  | D                    | 50   | 60   | 80    | 100  | 150  | ,)~ |
|    | ψ | 0.43          | 0.44 | 0.46 | 0.48 | 0.39 | Ψ  | 0.60           | 0.62       | 0.65           | 0.67    | 0.69 | Ψ                    | 0.10 | 0.10 | 0.11/ | 0.12 | 0.13 |     |
|    |   |               | W-   | WU4  | 室内   | ,    |    |                | W-         | WU5            | 室内      |      |                      | V.22 |      |       | 室内   | 1    |     |
|    | D | 50            | 60   | 80   | 100  | 120  | D  | 50             | 60         | 109            | 100     | 120  | D                    | 50   | 60   | 80    | 100  | 120  |     |
|    | Ψ | 0.09          | 0.10 | 0.10 | 0.11 | 0.11 | ψ  | 0.13           | 9.13       | 0.14           | 0.15    | 0.16 | Ψ                    | 0.66 | 0.68 | 0.69  | 0.71 | 0.71 |     |
|    |   |               |      |      |      | 汉    |    | <i>&gt;</i> ,, | ,          |                |         |      |                      |      |      |       | 6    | 3    |     |

大利煤

|   |       |          |                |          |             |      |         |       |                                        | 117      | ()   |      |     |      |                   | 绫    | 表        |             |        |
|---|-------|----------|----------------|----------|-------------|------|---------|-------|----------------------------------------|----------|------|------|-----|------|-------------------|------|----------|-------------|--------|
|   |       |          |                |          |             |      | W-      | −WB   |                                        | _        | 窗下口  | 1)   |     |      |                   |      |          |             |        |
|   |       |          | W-             | WB7      |             |      |         |       | W_                                     | WB8      |      |      |     | ſ    | w-                | WB9  |          |             |        |
|   |       |          |                |          |             |      | チ       |       |                                        | <u></u>  | 图内   |      |     |      |                   |      | <b>A</b> | <b>&gt;</b> |        |
|   | D     | 50       | No.            | 80       | 100         | 120  | D       | 50    | 60                                     | 80       | 100  | 120  | D / | 50   | 60                | 80   | 100      | 120         |        |
|   | \*\*\ | 0.43     | 0.44           | 0.46     | 0.48        | 0.49 | ψ       | 0.09  | 0.10                                   | 0.10     | 0.11 | 0.11 | 1   | 0.10 | 0.10              | 0.11 | 0.12     | 0.13        |        |
| 汉 | >     | <i>,</i> | w_v            | WB10     | )           |      |         |       | w-v                                    | WB11     |      |      | 5   |      | W−V               | WB12 | !        |             |        |
|   |       |          |                | //// · 室 | [内          |      | ×1      |       |                                        | <b>1</b> | 图内   | •    |     | Z Z  |                   |      | 室内       |             | ÉN TON |
|   | D     | 50       | 60             | 80       | 100         | 120  | 1       | 50    | 60                                     | 80       | 100  | 120  | D   | 50   | 60                | 80   | 100      | 120         | 7      |
|   | ψ     | 0.60     | 0.62           | 0.65     | 0.67        | 0.69 | ψ       | 0.13  | 0.13                                   | 0.14     | 0.15 | 0.16 | ψ   | 0.66 | 0.68              | 0.69 | 0,71     | 0.71        |        |
|   |       |          |                | X        | \<br>\<br>\ |      | W-      | -SU ( | 外墙                                     | —凸       | 窗上   | □)   |     |      | $\langle \rangle$ | 1/2  | •        |             |        |
|   |       | 0-50     | w<br>200<br>室内 | SUI      |             |      | 30<br>* | 00~50 | W—<br>00<br>2<br>2<br>2<br>2<br>2<br>4 |          |      |      |     |      |                   | ,    |          |             |        |
|   | D     | 50       | 60             | 80       | 100         | 120  | D       | 50    | 60                                     | 10%      | 100  | 120  |     |      |                   |      |          |             |        |
|   | ψ     | 0.37     | 0.33           | 0.27     | 0.24        | 0.22 | ψ       | 0.64  | 0.62                                   | 0.59     | 0.57 | 0.56 |     |      |                   |      |          |             |        |
|   | 6     | 4        |                |          |             | 汉    | X       | 5.XX  | ۱                                      |          |      |      |     |      |                   |      |          |             |        |

11/2 P-凸窗下口)





B. 0. 2 \* 墙的平均传热系数可按下式简化计算。

$$K_{\rm m} = \phi \cdot K \tag{B.0.2}$$

 $K_{\rm m}$ ——外墙平均传热系数[W/( $m^2$   $\times$  K)];

K——外墙主断面传热系数[ $\mathbf{W}$ / $\mathbf{m}^2 \cdot \mathbf{K}$ )];

φ——外墙主断面传热系数的修正系数,应按墙体保温构造 和传热系数综合考虑取值,其数值可按表 B.0.2 选取。

表 B.0.2 外墙主断面传热系数的修正系数  $\phi$ 

|                                         | XXX  |         |      | -7/11 |
|-----------------------------------------|------|---------|------|-------|
| 外墙平均传热系数 🗸                              | 外份   | <b></b> | 内仍   | 温     |
| $K_{\rm m}/[{ m W}/{ m (m^2 \cdot K)}]$ | 普通窗  | 凸窗      | 普通窗  | 凸窗    |
| 1.00                                    | 1.05 | 1.1     | 1.1  | 1.15  |
| 0.95                                    | 1.05 | 1.1     | 111  | 1.15  |
| 0.90                                    | 1.05 | 1.1     | 1,1  | 1.15  |
| 0.85                                    | 1.05 | 1.1     | 1.15 | 1.2   |
| 0.80                                    | 1.1  | 12      | 1.15 | 1.2   |
| 0.75                                    | 1.1  | 1.2     | 1.2  | 1.25  |
| 0.70                                    | 1.1  | 1.2     | 1.2  | 1.25  |
| 0.65                                    | 1.1  | 1.2     | 1.2  | 1.25  |

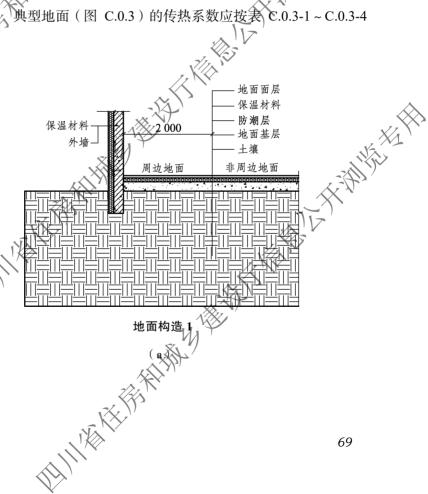
|                                                |      | W. A. | NA THE STATE OF TH |          |
|------------------------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                | _    | 112   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 续表       |
| 外墙平均传热系数                                       | 外    |       | 内包                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 杲温       |
| $K_{\rm m}/[{ m W}/~({ m m}^2\cdot { m K}~)~]$ | 普通窗入 | 凸窗    | 普通窗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 凸窗       |
| 0.60                                           | 11.3 | 1.3   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.25     |
| 0.55                                           | 1.2  | 1.3   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 🛞      |
| 0.50                                           | 1.2  | 1.3   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -X1      |
| 0.45                                           | 1.2  | 1.3   | 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 0.40                                           | 1.2  | 1.3   | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> |
| 0.35                                           | 1.3  | 1.4   | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _        |
| 0.30                                           | 1.3  | 1.4   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        |

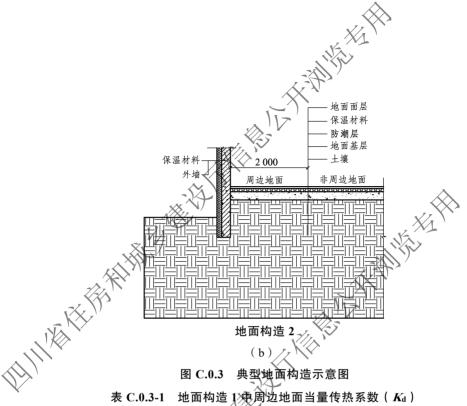
B. 0. 3 对于一般建筑,取屋面的买均传热系数等于屋面平壁部 分的传热系数。当屋面出现明显的结构性热桥时,屋面平均传热 系数应按照现行国家标准《民用建筑热工设计规范》GB 50176 的

规定计算。 **B. 0. 4** 为了综合考虑各朝向围护结构得失热量的差异,在太阳能丰富的高海拔地区,鼓励建筑师采用长轴朝南的体形,以充为 被动利用太阳能,应采用下式计算热当量体形系数:  $S' = \frac{\sum_{i=1}^{5} A_i \mathcal{E}_{si}}{V}$  (B.0.4)  $A = \frac{1}{2} \sum_{i=1}^{5} A_i \mathcal{E}_{si}$  (B.0.4)

$$S' = \frac{\sum_{i=1}^{5} A_i \mathcal{E}_{si}}{V}$$
 (B.0.4)

 $arepsilon_{si}$ ——各朝向围护结构面积修正系数,根据朝向和辐射照 度按表 B.0.4 取值


### 面积 各朝向围护结构面积修正系数 $arepsilon_{si}$ 表 B.0.4


| <b>** 2.0.1</b> 日初月 田 7 年 1 年 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 朝向[冬季南向辐射照度/(W/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $oldsymbol{arepsilon}_{SI}$ |
| 南(<150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.65                        |
| 南(150~200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.55                        |
| 南 ( 200 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.45                        |
| 东 西 ( <150 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                        |
| 西(150~200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -730                        |
| 东、西(≥200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:55                        |
| 北向                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                        |
| 架空层                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                        |
| 屋面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                        |
| 東空层<br>屋面<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪」<br>「大阪<br>「大阪」<br>「大阪<br>「大<br>「大<br>「大<br>「大<br>「大<br>「大<br>「大<br>「大<br>「大<br>「大 |                             |

## 计划流程制 地面传热系数计算 附录 C

地面传热系数应由二维非稳态传热计算程序计算确定 C. 0. 1

地面传热系数应分成周边地面和非周边地面两种传热系 C. 0. 2 数、周边地面应为外墙内表面2m以内的地面,周边以外的地面 应为非周边地面。 应为非周边地面。 C. 0.3 典型地面(图 C.0.3)的传热系数应接表 C.0.3-1~C.0.3-4





### 图 C.0.3 典型地面构造示意图

### 表 C.0.3-1

|                         | 图 .          | C.0.3 典型》              | 也叫何但小总               | / 図                  |                     | $\Delta$ |
|-------------------------|--------------|------------------------|----------------------|----------------------|---------------------|----------|
| 表 C                     | .0.3-1 地正    | 面构造 1 本周               | 边地面当量的               | 专热系数( <i>K</i>       | (d )                |          |
|                         |              | Wa Ya                  |                      | 单位: W                | $V/(m^2 \cdot K)$   | ×1'      |
| 保温层热阻/                  | 康定供暖期        | 大孜供暖期                  | 炉霍供暖期                | 石渠供暖期                | 色达供暖期               |          |
| [ ( $m^2 \cdot K$ ) /W] | $t_e=2.8$ °C | t <sub>e</sub> =0.7 °C | $t_{\rm e}$ =-6.5 °C | $t_{\rm e}$ =-8.5 °C | $t_{\rm e} = -11.4$ | /        |
| 3.00                    | 0.05         | 0.06                   | 0.08                 | 0.08                 | 0.08                |          |
| 2.75                    | 0.05         | 0.07                   | 0.09                 | 0.08                 | 0.09                |          |
| 2.50                    | 0.06         | 0.07                   | 0.10                 | 0.09                 | 0.11                |          |
| 2.25                    | 0.08         | 0.07                   | 0.11                 | 0.10                 | 0.11                | '        |
| 2.00                    | 0.09         | 0.08                   | 0.12                 | 0.11                 | 0.12                |          |
| 1.75                    | 0.10         | 0.09                   | 0.14                 | 0.13                 | 0.14                |          |
| 1.50                    | 0.11         | 0.11                   | 0.15                 | 0.14                 | 0.15                | 1        |
| 1.25                    | 0.12         | 0.12                   | 0.16                 | 0.15                 | 0.17                | 1        |
| 1.00                    | 0.14         | 0.14                   | 10,19                | 0.17                 | 0.20                | 1        |
| 0.75                    | 0.17         | 0.17                   | 0.22                 | 0.20                 | 0.22                | 1        |
| 0.50                    | 0.20         | 0.20                   | 0.26                 | 0.24                 | 0.26                | 1        |
| 0.25                    | 0.27         | 0.26                   | 0.32                 | 0.29                 | 0.31                | 1        |
| 0.00                    | 0.34         | 0.38                   | 0.38                 | 0.40                 | 0.41                | <u> </u> |
|                         |              | 7' X F                 |                      |                      |                     |          |

# KANKE KA 表 C.0.3-2 地面构造 2 中周边地面当量传热系数 (Ka)

单位: W/(m<sup>2</sup>·K)

| _  |                                         |                        | V/-       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                      |                       |
|----|-----------------------------------------|------------------------|-----------|---------------------------------------|----------------------|-----------------------|
|    | 保温层热阻/                                  | 康定供暖期                  | 甘孜供暖期     | 炉霍供暖期                                 | 石渠供暖期                | 色达供暖期                 |
| [  | $(\ m^2  \boldsymbol{\cdot}  K ) \ /W]$ | t <sub>e</sub> =2.8 °C | 1/e=0.√°C | $t_{\rm e}$ =-6.5 °C                  | $t_{\rm e}$ =-8.5 °C | $t_{\rm e}$ =-11.4 °C |
|    | 3.00                                    | 0.05                   | 0.06      | 0.08                                  | 0.08                 | 0.08                  |
|    | 2.75                                    | 0.05                   | 0.07      | 0.09                                  | 0.08                 | 0.09                  |
|    | 2.50                                    | 0.06                   | 0.07      | 0.10                                  | 0.09                 | 0.11                  |
|    | 2.25                                    | 0108                   | 0.07      | 0.11                                  | 0.10                 | Z 0.11                |
|    | 2.00                                    | Ø.09                   | 0.08      | 0.12                                  | 0.11                 | 0.12                  |
|    | 1.75                                    | 0.10                   | 0.09      | 0.14                                  | 0.13                 | 0.14                  |
|    | 1.50                                    | 0.11                   | 0.11      | 0.15                                  | 0(14)                | 0.15                  |
| -  | 1,25                                    | 0.12                   | 0.12      | 0.16                                  | 0.15                 | 0.17                  |
| -[ | 1.00                                    | 0.14                   | 0.14      | 0.19                                  | 0.17                 | 0.20                  |
|    | 0.75                                    | 0.17                   | 0.17      | 0.22/                                 | 0.20                 | 0.22                  |
|    | 0.50                                    | 0.20                   | 0.20      | 0.26                                  | 0.24                 | 0.26                  |
|    | 0.25                                    | 0.27                   | 0.26      | 0.32                                  | 0.29                 | 0.31                  |
|    | 0.00                                    | 0.34                   | 0.38      | 0.38                                  | 0.40                 | 0.41                  |

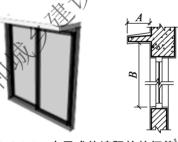
|     | 0.25                                  | 0.27                   | 0.26                          | 0.32                    | 0.29                    | 0.31                     | $\wedge$      |
|-----|---------------------------------------|------------------------|-------------------------------|-------------------------|-------------------------|--------------------------|---------------|
|     | 0.00                                  | 0.34                   | 0.38                          | 0.38                    | 0.40                    | 0.41                     |               |
|     | 表 C.0                                 | 0.3-3 地面               | 构造山中非局                        | 周边地面当量                  | :传热系数(』                 | $K_{\rm d}$ )            | $\chi \chi_1$ |
|     |                                       | _                      | XV.                           |                         |                         | $I/(m^2 \cdot K)$        | (R)           |
| £   | ネ温层热阻/                                | 康定供暖期                  | 甘孜供暖期                         | 炉霍供暖期                   | 石渠供暖期                   | 色达供暖期                    | ·             |
| [ ( | $m^2  \boldsymbol{\cdot}  K  )   /W]$ | t <sub>e</sub> =2.8 °C | <i>t</i> <sub>e</sub> =0.7 °C | t <sub>e</sub> =−6.5 °C | t <sub>e</sub> =−8.5 °C | t <sub>e</sub> =-11.4 °C |               |
|     | 3.00                                  | 0.05                   | 0.06                          | 0.08                    | 0.08                    | 0.08                     |               |
|     | 2.75                                  | 0.05                   | 0.07                          | 0.09                    | 0.08                    | 0.09                     |               |
|     | 2.50                                  | 0.06                   | 0.07                          | 0.10                    | 0.09                    | 0.11                     |               |
|     | 2.25                                  | 0.08                   | 0.07                          | 0.11                    | 0(0                     | 0.11                     |               |
|     | 2.00                                  | 0.09                   | 0.08                          | 0.12                    | 0.11                    | 0.12                     |               |
| <   | 1.75                                  | 0.10                   | 0.09                          | 0.14                    | 0.13                    | 0.14                     |               |
|     | 1.50                                  | 0.11                   | 0.11                          | 0.15                    | 0.14                    | 0.15                     |               |
|     | 1.25                                  | 0.12                   | 0.12                          | 0.16                    | 0.15                    | 0.17                     |               |
|     | 1.00                                  | 0.14                   | 0.14                          | 9.19                    | 0.17                    | 0.20                     |               |
|     | 0.75                                  | 0.17                   | 0.17                          | 0.22                    | 0.20                    | 0.22                     |               |
|     | 0.50                                  | 0.20                   | 0.20                          | <sup>Υ</sup> Γ΄ 0.26    | 0.24                    | 0.26                     |               |
|     | 0.25                                  | 0.27                   | 9.26                          | 0.32                    | 0.29                    | 0.31                     |               |
|     | 0.00                                  | 0.34                   | 0.38                          | 0.38                    | 0.40                    | 0.41                     |               |
|     |                                       |                        | · KY                          |                         |                         |                          | •             |
|     |                                       | , ik                   | <b>≫</b> `                    |                         |                         | 71                       |               |
|     |                                       | 111                    | ς                             |                         |                         |                          |               |
|     |                                       |                        |                               |                         |                         |                          |               |
|     |                                       | V                      |                               |                         |                         |                          |               |

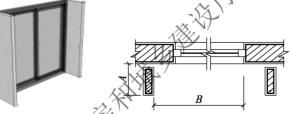
# 面, 表 C.0.3-4 地面构造 2 中非周边地面当量传热系数 ( $K_{\rm d}$ )

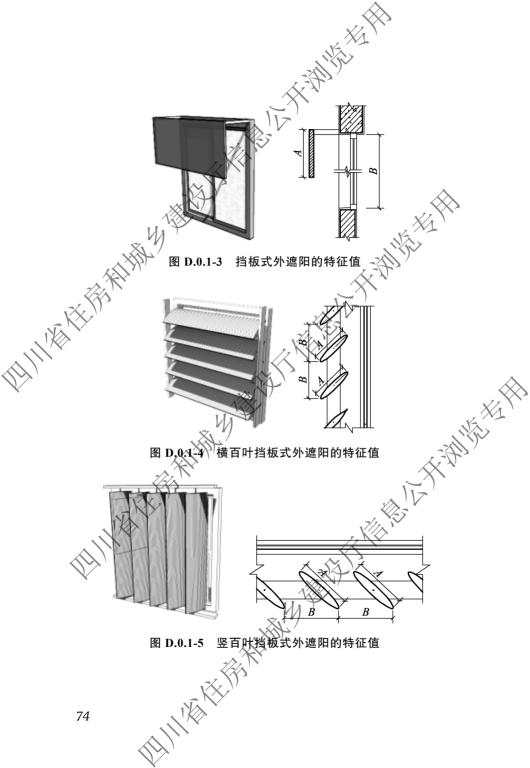
单位: W/(m<sup>2</sup>·K)

|                                   |                        | <b>*</b>               | 2                         | 平□: W                     | // (III • K.)                    |        |
|-----------------------------------|------------------------|------------------------|---------------------------|---------------------------|----------------------------------|--------|
| 保温层热阻/<br>[(m <sup>2</sup> ・K)/W] | 康定供暖期                  | 甘孜供暖期                  | 炉霍供暖期                     | 石渠供暖期                     | 色达供暖期<br>t <sub>c</sub> =-11.4°C |        |
| 3.00                              | t <sub>e</sub> =2.8 °C | t <sub>c</sub> =0.√ °C | $t_{\rm e}$ =-6.5 °C 0.08 | $t_{\rm e}$ =-8.5 °C 0.08 | 0.08                             |        |
|                                   |                        | <del>2</del>           |                           |                           | 0.08                             | ·      |
| 2.75                              | 0.05                   | 0.07                   | 0.09                      | 0.08                      | 1//                              |        |
| 2.50                              | 0.06                   | 0.07                   | 0.10                      | 0.09                      | X0[11]                           |        |
| 2.25                              | 0.08                   | 0.07                   | 0.11                      | 0.10                      | 0.11                             |        |
| 2.00                              | Υ' 0.09                | 0.08                   | 0.12                      | 0.11                      | 0.12                             |        |
| 125                               | 0.10                   | 0.09                   | 0.14                      | 0,13                      | 0.14                             |        |
| 1.50                              | 0.11                   | 0.11                   | 0.15                      | 0.14                      | 0.15                             |        |
| 1.25                              | 0.12                   | 0.12                   | 0.16                      | 0.15                      | 0.17                             |        |
| 1.00                              | 0.14                   | 0.14                   | /0.19                     | 0.17                      | 0.20                             |        |
| 0.75                              | 0.17                   | 0.17                   | 0.22                      | 0.20                      | 0.22                             | $\sim$ |
| 0.50                              | 0.20                   | 0.20                   | 0.26                      | 0.24                      | 0.26                             |        |
| 0.25                              | 0.27                   | 0.26                   | 0.32                      | 0.29                      | 0.31                             | X1     |
| 0.00                              | 0.34                   | 0.38                   | 0.38                      | 0.40                      | 0.41                             |        |
| 0.00                              |                        | 0.38                   |                           |                           |                                  |        |
| 72                                |                        | XXXX                   |                           |                           |                                  |        |

### 外遮阳系数的简化计算及 附录 D 太阳得热系数计算


外遮阳系数应按下列公式计算确定: D. 0. 1


$$SD = ax^2 + bx + 1$$


x——外遮阳特征值, x > 1 时, 取 x = 1a, b——拟合系数, 按表 D.0.1 选取;

按图 D.0.1-1~D.0.1-5

确定。









|   |                       | - 1                                    | 17    |       |               |       |
|---|-----------------------|----------------------------------------|-------|-------|---------------|-------|
|   | 外遮阳基本类型               | 拟合系数                                   | 东     | 南     | 西             | 北     |
|   | 水平式(图 D.0.1-1)        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0.35  | 0.47  | 0.36          | 0.30  |
|   | 水 (因 D.0.1-1)         | Ь                                      | -0.75 | -0.79 | -0.76         | -0.58 |
|   | 垂直式(图 D.0.1.2)        | а                                      | 0.32  | 0.42  | 0.33          | 44    |
|   | 並且式(图 D.O.I           | b                                      | -0.65 | -0.80 | -0.66         | 10.84 |
|   | 挡板式 (图 D.0.1-3)       | а                                      | 0.00  | 0.35  | 0.00          | 0.13  |
|   | 13/1/20 (A) D.0.1-5 ) | b                                      | -0.93 | -1.00 | $\sqrt{0.93}$ | -0.91 |
|   | 固定横百叶挡板式              | а                                      | 0.45  | 0.54  | 0.48          | 0.34  |
|   | (图 D.0.1-4)           | b                                      | -1.26 | 1.29  | -1.23         | -0.98 |
| 4 | 固定竖百叶挡板式              | а                                      | 0,03  | 0.19  | 0.16          | 0.59  |
|   | (图 D.0.1-5)           | <i>b</i>                               | 0.95  | -1.16 | -0.80         | -1.28 |
|   | 冬                     |                                        | 0.25  | 0.10  | 0.19          | 0.16  |
|   | 活动横百叶挡板式              | W B                                    | -0.72 | -0.45 | -0.70         | -0.70 |
|   | (图 D.0.1-4)           | a                                      | 0.54  | 0.56  | 0.54          | 0.60  |
|   |                       | b                                      | -1.26 | -1.30 | -1.25         | 1.23  |
|   | × × × ×               | а                                      | 0.03  | 0.20  | 0.17          | 0.60  |
|   | 活动竖百叶挡板式              | b                                      | -0.95 | -1.20 | 0.83          | -1.28 |
|   | (图 D.0.2-5)           | а                                      | 0.06  | 0.26  | 0.24          | 0.22  |
|   |                       | b                                      | -0.36 | 1.10  | -0.55         | -1.36 |
| 1 |                       |                                        |       | - 1   |               |       |

注: 拟合系数应按 5.1.4 条有关朝向的规定在本表中选取。

D. 0. 2 组合形式的外遮阳系数,由各种参加组合的外遮阳形式

的外遮阳系数(按 D.0.1 计算) 水平式+垂直式组合的外遮阳系数=水平式遮阳系数×垂直式遮阳系数

水平式+挡板式组合的外遮阳系 数=水平式遮阳系数×挡板 式遮阳系数

D. 0.3 当外遮阳的遮阳板 采用有透光能力的材料制作时,应按 下式修正:

$$SD = 1 - (1 - SD^*)(1 - \eta^*)$$

。遮阳的遮阳板采用非透明材料制作时的多 式中 系数,按 D.0.1 计算;

阳板的透射比,按表 D.0.3 选取

| 表 D.0.3 | 遮阳板的透射比 |
|---------|---------|
|---------|---------|

| $\mathcal{N}$           | <i>Y</i> />- *               |                      |
|-------------------------|------------------------------|----------------------|
| 遮阳板使用的材料                | 规格                           | $\eta^*$             |
| 织物面料、玻璃钢类板              |                              | 0.40                 |
| 玻璃、有机玻璃类板               | 深色。0 <s<sub>c ≤ 0.6</s<sub>  | 0.60                 |
| 次州、 自 7 L 级和 大 似        | 浅色: 0.6 <s<sub>e≤0.8</s<sub> | 0.80                 |
| Š                       | 穿孔率: 0<φ≤0.2                 | 0.10                 |
| 金属穿孔板                   | 穿孔率: 0.2< <i>φ</i> ≤0.4      | 0.30                 |
| 亚周牙记仪                   | 穿孔率: 0.4< <i>φ</i> ≤0.6      | 0.50                 |
|                         | 穿孔率: 0.6< <i>φ</i> ≤0.8      | 0.70                 |
| 铝合金百叶板                  | -                            | 0.20                 |
| 木质百叶板                   | - (                          | 0.25                 |
| 混凝土花格                   | - 1                          | 0.50                 |
| 木质花格                    |                              | 0.45                 |
| 铝合金百叶板<br>质百叶板<br>混凝土花格 | ,                            | 0.20<br>0.25<br>0.50 |

太阳得热系数(SHGC)的计算公式,按式(D.0.4)计算。 其中外表面对流换热系数按夏季条件确定。

 $\Sigma g$   $A_{\rm e}$   $+\Sigma \rho \cdot \frac{K}{a_{\rm e}}$   $A_{\rm r}$   $A_{\rm w}$  (D.6 SHGC——门窗、幕墙的太阳得热系数; g ——门窗、幕墙中透光部分的太阳辐射总透射比、换排 国家标准 GB/T 2680 的规定计算;  $\rho$  —— 门窗、幕墙中非透光部分的大阳辐射吸收系数;  $\rho$  —— 门窗、幕墙中非透光部分的传热系数[W/(m²·K)];  $A_{\rm g}$  —— 门窗、幕墙中透光部分的面积  $M^2$ );  $A_{\rm g}$  —— 门窗、幕墙中非透光部分的面积  $M^2$ );  $A_{\rm g}$  —— 门窗、幕墙中非透光部分的面积  $M^2$ );  $A_{\rm w}$  —— 门窗、幕墙的面积  $M^2$ )。

即以及其時數學

# 附录 E 各类新建居住建筑平均能耗指标

E. 0. 1 标准工况下,不同气候区的各类新建居住建筑供暖与供冷平均能耗指标应符合表 E.0.1 的规定。

|   | . X            | 177 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/11                          |
|---|----------------|-----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|   | 执大议划           | l I | 供暖耗热量/                 | 供暖耗电量/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 供冷耗电量/                        |
|   | 7/2/2          | ,   | [MJ/ $(m^2 \cdot a)$ ] | [kW · h/ ( m <sup>2</sup> · a )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[kW \cdot h/ (m^2 \cdot a)]$ |
|   | 高海拔严寒          | A区  | 223                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |
|   | 地区             | В区  | 178                    | 7/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             |
| / | (1)            | C 🗵 | 138                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |
|   | 高海拔寒冷<br>地区    | A区  | 82                     | <i>t</i> ), –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                             |
|   |                | В区  | 67                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1                           |
|   | 夏热冬冷<br>地区     | A区  | S. 41                  | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                          |
|   | (Ⅲ)            | В区  | (1)1)1 <sup>2</sup>    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.5                          |
|   | 温和地区           | Α区  | _                      | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
|   | ( <b>I</b> V ) | BA  | _                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/2                          |
|   |                | *   |                        | AN WEST OF THE SECOND S |                               |
|   | 78             |     | 1/2/V                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

### 附录 F 关于面积和体积的计算

- F. 0.1 建筑面积(水),应按各层外墙外包线围成的平面面积的总和计算。包括平地下室的面积,不包括地下室的面积。
- **F. 0.2** 建筑体积 ( $V_0$ ), 应按与计算建筑面积所对应的建筑物外表面和底层地面所围成的体积计算。
- **F. 0.3** 换气体积(V): 楼梯间及封闭外廊不供暖时,按V=0.60 V0 **计算**,楼梯间及封闭外廊供暖时,按V=0.65 % 计算。
- **F. 0.4** 屋顶或顶棚面积,应按支承屋顶的外墙外包线围成的面积计算。应减去不供暖楼梯间及处廊的屋顶或顶棚面积。
- F. 0. 5 外墙面积,应按不同朝间分别计算。某一朝向的外墙面积,由该朝向的外表面积减去外窗面积构成,并减去不供暖楼梯间及外廊的外墙面积。
- **F. 0. 6** 外窗(包括阳台门上部透明部分)面积,应按不同朝尚和 有无阳台分别计算,取洞口面积。
- F. 0.7 外门面积,应按不同朝向分别计算,取洞口面积。
- F. 0. 8 随台门下部不透明部分面积,应按不同朝向分别计算,取洞口面积。
- F. 0.9 地面面积,应按外墙内侧围成的面积计算。
- **F. 0. 10** 地板面积,应按外墙内侧围成的面积计算,并区分为接触室外空气的地板和不供暖地下室上部的地板。
- F. 0. 11 楼梯间及封闭外廊隔墙面积,楼梯间及封闭外廊不供暖时,应计算此项面积,由楼梯间及封闭外廊总面积减去户门洞口

A. 0. 12 户门面积,楼梯间及封闭外廊不供暖时,应计算此项面积,由户门洞口总面积构成 即用機能排 即川港展開

### 主动式太阳能热水供暖系统 附录 G 集热器总面积计算

直接系统集热器总面积应按下式计算: G. 0. 1

$$A_{\rm C} = \frac{Q_{\rm n} f_{\rm n} + Q_{\rm w} f_{\rm w}}{I_{\rm T} \eta_{\rm cd} (1 - \eta_{\rm L})}$$

$$Q_{\rm W} = G_{\rm W} c_{\rm W} (t_{\rm end} - t_{\rm i})$$

Ac——直接系统集热器总面积(r

供暖太阳能保证率(%)、根据系统使用期内的太阳 辐照、系统的经济性以及用户的要求等因素综合考 虑后确定, 应为60%~80%;

-卫生热水太阳能保证率(%),根据系统使用期内的 太阳辐照、系统的经济性以及用户的要求等因素 合考虑后确定, 应为 30%~80%;

- 集热器的供暖期平均效率,根据经验值宜取为 0.4~0.5, 具体取值应根据集热器产品的实际测试

蓄热水箱和管路的热损失率、根据经验取值为0.2~ 0.3. 具体取值应根据蓄热蒸箱和管路的保温情况与 系统规模确定:

——当地集热器采光面长的供暖期太阳总辐射日平均照 度 (W/m²): -

-系统承担的供暖平均供热量 ( W );

Qw —— 系统承担的卫生热水平均供热量(W); Gw —— 日均田水量(1) Gw——日均用水量(kg);

cw---水的定压比热餐[kJ/(kg・°C)];

 $t_{\text{end}}$  — 贮水箱内水的设计温度 (°C);

$$A_{\rm in} = A_{\rm C} \left( 1 + \frac{F_{\rm R} U_{\rm L} \cdot A_{\rm C}}{U_{\rm hx} \cdot A_{\rm hx}} \right)$$

 $A_{\rm in} = A_{\rm C} \left(1 + \frac{F_{\rm R} U_{\rm L} \cdot A_{\rm C}}{U_{\rm hx} \cdot A_{\rm hx}}\right)$  (G.0.2)  $A_{\rm in}$ ——间接系统集热器总面积( $m^2$ )"

 $A_{\rm in} = A_{\rm C} \left[ 1 + \frac{F_{\rm R} U_{\rm L} \cdot A_{\rm C}}{U_{\rm hx} \cdot A_{\rm hx}} \right]$  (G.0.2) 式中  $A_{\rm in}$ ——间接系统集热器总面积( $m^2$ )。  $F_{\rm R} U_{\rm L}$ ——集热器总热损失系统[ $W/m^2 \cdot {}^{\circ}{\rm C}$ )]:对平板型 集热器, $F_{\rm R} U_{\rm L}$  宜取值  $4 \sim 6 \ W/(m^2 \cdot {}^{\circ}{\rm C})$ 即加州為民族縣

*U*<sub>hx</sub>——换热器传热系数[W/(m²⋅°C)]。

A<sub>hx</sub>——换热器换热面积 ( m² )。

# 玻璃的光学、热工性能和窗的传热系数 附录 H

典型玻璃的光学、热工性能参数应按表 H.0.1 取值 表 H.0.1 典型玻璃的光学、热工性能参数 Н. 0. 1

|                      | M/                     |             |            | 1/2          |       |   |
|----------------------|------------------------|-------------|------------|--------------|-------|---|
|                      | All A                  | 可见光         | 太阳光        | 中部传热         | 镀膜玻璃  |   |
|                      | 玻璃品种                   | 透射比         | 总透射比       | 系数 (4)       | 半球    |   |
| -/2                  | C.K.                   | $T_{\rm v}$ | $g_{ m g}$ | [W/(m²/· K)] | 辐射率 ζ |   |
| 透明                   | 6 mm 透明玻璃              | 0.87        | 0.82       | 5.36         | _     |   |
|                      | 6 mm 高透光热反射玻璃          | 0.78        | 0.77       | 5.27         | 0.80  |   |
| 热反射<br>玻璃            | 6 mm 中透光热反射玻璃          | 0.51        | 0.59       | 5.30         | 0.81  |   |
|                      | 6 mm 低透光热反射玻璃          | 0.37        | 0.52       | 5.27         | 0.80  |   |
| Low-E<br>单片          | 6 mm 在线型 Low-E 玻璃 1    | 0.80        | 0.69       | 3.54         | 0.18  |   |
| 玻璃                   | 6 mm 在线型 Low-E 玻璃 2    | 0.73        | 0.63       | 3.72         | 0.25  | 4 |
|                      | 6 透明+12A+6 透明          | 0.77        | 0.71       | 2.80         | -112  | 3 |
|                      | 6 绿色吸热+12416 透明        | 0.66        | 0.47       | 2.80         |       |   |
|                      | 6 浅灰色吸热+12A+6 透明       | 0.38        | 0.45       | 2.80         |       |   |
|                      | 6 中透光热反射+12A+6 透明      | 0.49        | 0.47       | 2.41         | 0.56  |   |
| 双玻<br>中空 <b>&gt;</b> | 6 低透光热反射+12A+6 透明      | 0.40        | 0.38       | 2.66         | 0.84  |   |
| 玻璃                   | 6 超高透光 Low-E+12A+6 透明  | 0.71        | 0.57       | 1.78         | 0.10  |   |
| V                    | 6 高透光 Low-E+12A+6 透明   | 0.60        | 0.46       | 1.76         | 0.09  |   |
|                      | 6 中透光 Low-E+12A+6 透明   | 0.51        | 0.40       | 1.77         | 0.09  |   |
|                      | 6 低透光 Low-E+12A+6 透明   | 842         | 0.32       | 1.70         | 0.05  |   |
|                      | 6 超高透光 Low-E+12Ar+6 透明 | 0.71        | 0.57       | 1.52         | 0.10  |   |
|                      |                        |             |            |              | 83    |   |
|                      | V                      |             |            |              |       |   |

|      |          |                                              |                                 |                              | X1                               |                   |           |      |   |
|------|----------|----------------------------------------------|---------------------------------|------------------------------|----------------------------------|-------------------|-----------|------|---|
|      |          |                                              |                                 | -311,1                       |                                  |                   |           |      |   |
|      |          |                                              | \(\frac{\lambda}{\text{\chi}}\) | XXI.                         |                                  |                   |           |      |   |
|      |          |                                              | 117                             | )                            | 4                                | 卖表                | _         |      |   |
|      |          | nt riv II Sh                                 | 可见光                             | 太阳光                          | 中部传热                             | 镀膜玻璃              |           |      |   |
|      |          | 玻璃品种                                         | 透射比<br>T <sub>v</sub>           | 总透射比<br><i>g</i> g           | 系数 K/<br>[W/(m <sup>2</sup> ・K)] | 半球<br>辐射率 $\zeta$ |           |      |   |
|      |          | 6 高透光 Low-E+12Ar+6 透明                        | 0.60                            | 0.46                         | 1.51                             | 0.09              |           |      |   |
|      |          | 6 中透光 Low-E+12Ar +6 透明                       | 0.51                            | 0.40                         | 1.51                             | 0.09              |           |      |   |
|      |          | 6 高透光双镍 Low-E+9A/12A+6<br>透明                 | 0.63                            | 0.41/0.41                    | 1.87/1.67                        | 0.04              |           |      |   |
|      |          | 6 高透光双银 Low-E+9Ar/12Ar+<br>6 透明              | 0.63                            | 0.41/0.41                    | 1.52/1.41                        | 0.04              |           |      |   |
|      | -, 4     | 6 中透光双银 Low-E+9A/12A +6<br>透明                | 0.49                            | 0.31/0.31                    | 1.84/1.64                        | 0.02              |           |      |   |
| N.   |          | ′6 中透光双银 Low-E+9Ar/12Ar+<br>6 透明             | 0.49                            | 0.31 0.31                    | 1.48/1.37                        | 0.02              |           |      |   |
|      | 双玻       | 6 低透光双银 Low-E+9A/12A +6<br>透明                | 0.43                            | 0.29/0.28                    | 1.85/1.65                        | 0.03              |           |      |   |
| Min, | 中空<br>玻璃 | 6 低透光双银 Low-E+9A/12A +6<br>透明                | 0.43                            | 0.28/0.27                    | 1.49/1.38                        | 0.03              |           |      |   |
|      |          |                                              |                                 | 6 高透光三银 Low-E+9A/12A-6<br>透明 | 0.60                             | 0.34/0.34         | 1.83/1.63 | 0.02 | 4 |
|      |          | 6 高透光三银 Low-E-9Ar/12Ar+<br>6 透明              | 0.60                            | 0.33/0.33                    | 1.47/1.36                        | 0.02              | •)"       |      |   |
|      |          | 6 中透光三银 Dow-E+9A/12A +6<br>透明                | 0.50                            | 0.28/0.27                    | 1.83/1.63                        | 0.02              |           |      |   |
|      |          | 6 中透光三银 Low-E+9Ar/12Ar +<br>6 透明             | 0.50                            | 0.27/0.27                    | 1.47/1/36                        | 0.02              |           |      |   |
|      |          | 6 低邊光三银 Low-E+9A/12A +6<br>透明                | 0.42                            | 0.23/0.23                    | 1.83/1.63                        | 0.02              |           |      |   |
|      |          | <b>∖</b> 6 低透光三银 Low-E+9Ar/12Ar+<br>6 透明     | 0.42                            | 0.22/0.22                    | 1.47/1.36                        | 0.02              |           |      |   |
|      | 三玻       | 6 超高透光 Low-E+12A +6 透明<br>+12A+6 透明          | 0.63                            | 1 52                         | 1.31                             | 0.10              |           |      |   |
|      | 中空玻璃     | 6 超高透光 Low-E+12Ar +6<br>透明+12Ar +6 透明        | 0.63                            | 0.51                         | 1.13                             | 0.10              |           |      |   |
|      | 25.14    | 6 高透光 Low-E+12A +6 透明<br>12A+6 透明            | 0.52                            | 0.41                         | 1.31                             | 0.09              |           |      |   |
| '    |          | 3/ \\                                        |                                 |                              |                                  |                   | •         |      |   |
|      | 84       | N. N. S. |                                 |                              |                                  |                   |           |      |   |
|      | 01       |                                              |                                 |                              |                                  |                   |           |      |   |
|      |          | V.                                           |                                 |                              |                                  |                   |           |      |   |

|   |            |                                                |            |                    | X/A                   |       |   |
|---|------------|------------------------------------------------|------------|--------------------|-----------------------|-------|---|
|   |            |                                                |            | 11/2               | ><br>>                |       |   |
|   |            |                                                | 4          | 3                  |                       |       |   |
|   |            |                                                |            | X                  |                       | 读表    |   |
| ſ |            | <u> </u>                                       | 可见光        | 太阳光                | 中部传热                  | 镀膜玻璃  | 1 |
|   |            | 玻璃品种                                           | 透射比        | 总透射比               | 系数 K/                 | 半球    |   |
|   |            |                                                | $T_{ m v}$ | $g_{ m g}$         | [W/ $(m^2 \cdot K)$ ] | 辐射率 ζ |   |
|   |            | 6 高透光 Low-E+12Ar +6 透明+<br>12A+6 透明            | 0.52       | 0.41               | 1.15                  | 0.09  | _ |
|   |            | 6 中透光 Low E+NA +6 透明+<br>12A+6 透明              | 0.45       | 0.36               | 1.30                  | 0.09  |   |
|   |            | 6 中透光 Low-E+12Ar +6 透明+<br>12Ar +6 透明          | 0.45       | 0.36               | 1.12                  | 0.09  |   |
|   | <b>√</b> / | 6 高透光双银 Low-E+12A +6 透明+12A+6 透明               | 0.57       | 0.37               | 1.25                  | 0.04  |   |
|   |            | % 中透光双银 Low-E+12A +6 透明+12A+6 透明               | 0.44       | 0.29               | 1.24                  | 0.02  |   |
| 以 | 中空玻璃       | 6 高透光三银 Low-E+12A+6 透明+12A+6 透明                | 0.53       | 7/0.30             | 1.23                  | 0.02  |   |
|   | 攻构         | 6 中透光三银 Low-E+12A+6 透明+12A+6 透明                | 0.45       | 0.25               | 1.23                  | 0.02  |   |
| V |            | 6 高透光双银 Low-E+12Ar +6 透<br>明+12Ar +6 透明        | 0.57       | 0.37               | 1.06                  | 0.04  | X |
|   |            | 6 中透光双银 Low-E+12Ar +6 透明+12Ar +6 透明            | 0.44       | 0.28               | 1.04                  | 0.02  |   |
|   |            | 6 高透光三银 Low-Ly 12Ar +6 透明+12Ar +6 透明           | 0.53       | 0.30               | 1.03                  | 0.02  | / |
|   |            | 6 中透光 <b>2 (4 L</b> ow-E+12Ar +6 透明+12Ar +6 透明 | 0.45       | 0.24               | 1.03                  | 0.02  |   |
|   | 真空         | 6.透明+12A+6 高透光双银 Low-<br>E+0.2mm 真空层+6 透明      | 0.60       | 0.35               | 0.68                  | 0.03  |   |
|   | 玻璃、        | 6 中透光 Low-E+0.2 mm 真空层<br>+6 透明                | 0.52       | 0.40               | 0.90                  | 0.15  |   |
|   | 气凝胶        | 1级                                             | 0.70       | 0.28 ~ 0.65        | 1.00                  | _     | ] |
|   | 玻璃         | 2 级                                            | 0.60       | 0. <b>16×</b> Ø.58 | 0.80                  | _     | ] |
|   |            | 6Low-E+9A+6 涂膜                                 | 0.65       | 0.35               | 2.00                  | _     |   |
|   | 涂膜         | 6Low-E+12A+6 涂膜                                | 10,65      | 0.35               | 1.80                  | _     | ] |
|   | 玻璃         | 6+9A+6涂膜                                       | 0.75       | 0.39               | 3.00                  | _     | 1 |
|   | i          | 6+12A+6 涂膜                                     | 0.75       | 0.38               | 2.80                  | _     | 1 |
|   |            |                                                |            |                    |                       | 85    | • |
|   |            |                                                |            |                    |                       |       |   |

# 窗传# H. 0. 2 典型玻璃配合不同窗框的整窗传热系数应按表 H.0.2 取值。

### 表 H.0.2 典型玻璃配合不同窗框的整窗传热系数

|   |         |                                 |           |                                                                  |                                                                | ,                                              | JEHJÆ                                           |                                                               |                      | -                                                                 |
|---|---------|---------------------------------|-----------|------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|----------------------|-------------------------------------------------------------------|
|   |         |                                 |           | 4                                                                | Z // V                                                         | 传热系                                            | 数/[W/(m <sup>2</sup>                            | ²·K)]                                                         |                      |                                                                   |
|   |         |                                 | 玻璃_>      | XX.                                                              | 金型材                                                            | 玻纤增强<br>聚氨酯<br>型材                              | 木框                                              | 铝塑型材                                                          | 塑料                   | 型林                                                                |
|   |         | 玻璃品种                            | 中部技数系数    | 非隔热<br>金属型材<br>K <sub>f</sub> =10.8<br>W/<br>(m <sup>2</sup> ·K) | 隔热金属<br>型材<br>K <sub>f</sub> =4.0<br>W/<br>(m <sup>2</sup> ·K) | 玻纤增强<br>聚氨酯<br>型材<br>K <sub>f</sub> =1.6<br>W/ | 木框  K <sub>f</sub> =2.4  W/ (m <sup>2</sup> ·K) | 铝塑共挤<br>型材 K <sub>f</sub><br>=2.7<br>W/<br>(m <sup>2</sup> K) | 塑料型材<br>K; -2.7<br>W | 整 整 製料<br>型材 K <sub>Kf</sub><br>=2.0<br>W/<br>(m <sup>2</sup> ·K) |
|   |         |                                 |           | 窗框面积<br>15%                                                      | 窗框面积<br>20%                                                    | (m <sup>2</sup> ·K)<br>窗框面积<br>30%             | 窗框面积<br>25%                                     | 窗框画积<br>30%                                                   | 窗框面积<br>25%          | 窗框面积<br>25%                                                       |
| _ | K       | 6 透明+<br>9A/12A+6 透明            | 2.79/2.66 | 4.2/4.0                                                          | 3.2/3.0                                                        | 2.7/2.6                                        | 2.9/2.8                                         | 3.0/2.9                                                       | 3.0/2.9              | 2.8/2.7                                                           |
| K | >       | 6 透明+<br>16A/20A+6 透明           | 2.70/2.70 | 3.9/3.9                                                          | 3.0/3.0                                                        | 2.6/2.6                                        | 2.8/2.8                                         | 2.9/2.9                                                       | 2.9/2.9              | 2.7/2.7                                                           |
|   |         | 6 吸热+<br>9A/12A+6 透明            | 2.90/2.80 | 4.1/4.0                                                          | 3.2/3.1                                                        | 2.8/2.7                                        | 3.0/2.9                                         | 3.1/3.0                                                       | 3.1/3.0              | 2.9/2.8                                                           |
|   |         | 6 热反射<br>+9A/12A+6 透明           | 2.80/2.60 | 4.0/3.8                                                          | 3.1/2.9                                                        | 2,7/2.5                                        | 2.9/2.7                                         | 3.0/2.8                                                       | 3.0/2.8              | 2.8/2.6                                                           |
|   | 双玻      | 6Low-E<br>+9A/12A+6 透明          | 1.99/1.80 | 3.3/3.2                                                          | 7.4/2.X                                                        | 2.0/1.9                                        | 2.3/2.1                                         | 2.4/2.2                                                       | 2.4/2.2              | 2.2/2.0                                                           |
|   | 坂中 空 玻璃 | 6Low-E+9 Ar /12<br>Ar +6 透明     | 1.69/1.57 | 3.0/2.9                                                          | 2/1/2.0                                                        | 1.8/1.7                                        | 2.0/1.9                                         | 2.1/2.0                                                       | 2.1/2.0              | 1.9/1.8                                                           |
|   |         | 6 双银 Low-<br>E+9A/12A+6<br>透明   | 1.87/1.67 | 3.2/3.1                                                          | 2.3/2.2                                                        | 1.9/1.8                                        | 2.2/2.0                                         | 2.3/2.1                                                       | 2.3/2.1              | 2.1/1.9                                                           |
|   |         | 6 双银 Low-<br>E+9Ar/12Ar+6<br>透明 | 1.54/1.42 | 2.9/2.8                                                          | 2.0/1.9                                                        | 1.7/1.6                                        | 1.9/1.8                                         | 2.0/1.9                                                       | 2.0/1.9              | 1.8/1.7                                                           |
|   |         | 6 三银 Low-<br>E+9AN2A+6<br>透明    | 1.83/1.63 | 3.2/3.0                                                          | 2.2/2.1                                                        | 1.9/1.8                                        | 2.1/2.0                                         | 2.202.1                                                       | 2.2/2.1              | 2.0/1.9                                                           |
|   | <       | 6 三银 Low-<br>E+9Ar/12Ar+6<br>透明 | 1.49/1.38 | 2.9/2.7                                                          | 2.0/1.8                                                        | 1.7/1.5                                        | 1.941.7                                         | 2.0/1.8                                                       | 2.0/1.8              | 1.8/1.6                                                           |
|   | [1]     | 6 透明+9A+6 透<br>明+9A+6 透明        | 1.89      | 3.2                                                              | 2.3                                                            | 2.0                                            | 1 22                                            | 2.3                                                           | 2.3                  | 2.1                                                               |
|   | 玻中空:    | 6 透明+12A+6<br>透明+12A+6<br>透明    | 1.76      | 3.2                                                              | 2.2                                                            | 1                                              | 2.1                                             | 2.2                                                           | 2.2                  | 2.0                                                               |
|   | 玻璃      | 6Low-E+12A +6<br>透明+12A+6<br>透明 | 1.33      | 2.7                                                              | 7.18                                                           | 1.6                                            | 1.8                                             | 1.9                                                           | 1.9                  | 1.7                                                               |
| _ |         |                                 |           | -K                                                               | ×,''                                                           |                                                |                                                 |                                                               |                      |                                                                   |
|   |         | 86                              | , , '     | 1                                                                | •                                                              |                                                |                                                 |                                                               |                      |                                                                   |
|   |         | ,                               |           | ` `                                                              |                                                                |                                                |                                                 |                                                               |                      |                                                                   |
|   |         |                                 | V         |                                                                  |                                                                |                                                |                                                 |                                                               |                      |                                                                   |

| 按线系数(W (m · K)]  按线系数(W (m · K)]  按线系数(W (m · K)]  按线系数(W (m · K))  按线系数(M · K · 2 · 4 · 2 · 7 · K · 2 · 2 · 2 · 0 · 0 · 0 · 0 · 0 · 0 · 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                           |               |      |                                   |                                   |                      |                             | X                                 |                                            |                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|---------------|------|-----------------------------------|-----------------------------------|----------------------|-----------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|---|
| 接熱系数/[W/(m²·K)]   要料型材   要材   Kr=2.4   W/(m²·K)   m²·K     |    |                           |               |      |                                   |                                   |                      |                             | >>                                |                                            |                                   |   |
| 玻璃品种   玻璃品种   玻璃   大佐   銀数   大佐   銀数   大佐   銀数   大佐   大佐   大佐   大佐   大佐   大佐   大佐   大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                           |               |      |                                   |                                   |                      | < X                         |                                   | 续                                          | 表                                 |   |
| 玻璃品种   玻璃品种   玻璃   保急   取動   取動   取動   取動   取動   取動   取動   取                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Γ  |                           |               |      |                                   | ¥.                                | (传热系                 | 数/[W/ ( m²                  | · K ) ]                           |                                            |                                   | 1 |
| 玻璃品种   传热   条数   大利   大利   大利   大利   大利   大利   大利   大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                           |               | 玻璃   | 铝合金                               | <b>E型林</b>                        | 聚氨酯                  | 木框                          | 铝塑型材                              | 塑料                                         | 型材                                |   |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 玻璃品                       | 种             | 传热   | 金属型材                              | 型材                                | 聚氨酯                  | $K_{\rm f} = 2.4$           | 型材 K <sub>f</sub>                 |                                            | 多腔塑料 以                            |   |
| 15%   20%   30%   30%   25%     6 Low (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                           | .X            | Kg V | W/<br>(m <sup>2</sup> ·K)<br>窗框面积 | W/<br>(m <sup>2</sup> ·K)<br>窗框面积 | $W/$ $(m^2 \cdot K)$ | (m <sup>2</sup> ·K)<br>窗框面积 | W/<br>(m <sup>2</sup> ・K)<br>窗框面积 | W/<br>(m <sup>2</sup> · K/)<br>質框面积<br>25% | W/<br>(m <sup>2</sup> ·K)<br>窗框面积 |   |
| 6 双银 Low-<br>1-12A+6 透明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | +6/鍾明                     | +12Ar         | 1.16 |                                   |                                   | 30%                  |                             | 30%                               | 1.7                                        |                                   |   |
| <ul> <li>6 双銀 Low-E+12Ar +6 透明 1.07 2.6 1.7 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ĩ. | 6 双银<br>D+12A -           | Low-<br>+6 透明 | 1.25 | 2.6                               | 1.8                               | 1.5                  |                             | 1.8                               | 1.8                                        | 1.6                               |   |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  | 6 双银<br>E+12Ar<br>+12Ar + | Low-<br>+6 透明 | 1.07 | 2.6                               | 1.7                               | 1.4                  | 1.6                         | 1.7                               | 1.6                                        | 1.5                               |   |
| E+12Ar +6 透明 1.04 2.5 1.6 1.3 1.5 1.6 1.6 1.4 注: 1 5 mm 玻璃与 6 mm 长热系数差别很小,设计时 5 mm 玻璃组成的不同品种及规格的外窗可参照 6 mm 玻璃的外窗热工参数选用。  2 暖边中室玻璃应依据行业标准《建筑玻璃应用技术规程》JGJ113—2015 中的相关规定,同型材同玻璃增加暖边条后整窗传热系数取值可在表 H.0.2 基础上降低 0.15。 3 肉置遮阳中空玻璃的太阳得热系数 SHGC 应依据行业标准 肉置遮阳中空玻璃制品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 8 二年<br>E+12A -<br>+12A+  | +6 透明<br>6 透明 | 1.23 | 2.6                               | 1.8                               | 1.5                  | 1.7                         | 1.8                               | 1.8                                        | 1.6                               | X |
| 的外窗可参展 6 mm 玻璃的外窗热工参数选用。  2 暖边中室玻璃应依据行业标准《建筑玻璃应用技术规程》JGJ113—2015 中的相关规定,同型材同玻璃增加暖边条后整窗传热系数取值可在表 H.0.2 基础上降低 0.15。  3 肉置遮阳中空玻璃的太阳得热系数 SHGC 应依据行业标准 肉置遮阳中空玻璃制品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | E+12Ar                    | +6 透明         | 1.04 | 2.5                               | 1.6                               | 1.3                  | 1.5                         | 1.6                               | 1.6                                        | 1.4                               |   |
| 2 暖边中室玻璃应依据行业标准《建筑玻璃应用技术规程》JGJ113—2015 中的相关规定、同型材同玻璃增加暖边条后整窗传热系数取值可在表 H,0.2 基础上降低 0.15。<br>3 肉置遮阳中空玻璃的太阳得热系数 SHGC 应依据行业标准 肉置遮阳中空玻璃制品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 泊  |                           |               | - ^  | 1/                                |                                   |                      |                             | 玻璃组成                              | 的不同员                                       | 种及规格                              |   |
| 规定,同型材同玻璃增加暖边条后整窗传热系数取值可在表 H.0.2 基础上降低 0.15。<br>3 内置遮阳中空玻璃的太阳得热系数 SHGC 应依据行业标准 内置遮阳中空玻璃制<br>品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                           |               | - XI |                                   |                                   |                      |                             |                                   | 117                                        | <u></u>                           |   |
| 3 肉置遮阳中空玻璃的太阳得热系数 SHGC 应依据行业标准 肉置遮阳中空玻璃制品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                           | _ ^           | (Y   |                                   |                                   |                      |                             | - ✓                               |                                            |                                   |   |
| 品》JG/T255—2020 中的相关规定进行计算。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                           | 11//          |      |                                   |                                   |                      |                             | 1///                              | . *                                        |                                   |   |
| AND THE REPORT OF THE PARTY OF  |    |                           | , ,           |      |                                   |                                   |                      | 4                           | E.Medre Lea                       |                                            | 工权相明                              |   |
| WILLIAM 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | An.                       |               |      |                                   |                                   |                      | - X                         | _\                                |                                            |                                   |   |
| WALKE FEETHING TO SEE THE SEE  |    |                           |               |      |                                   |                                   | 1.7                  |                             |                                   |                                            |                                   |   |
| WALKER HILLIAM 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                           |               |      |                                   |                                   | X                    | ) '                         |                                   |                                            |                                   |   |
| AT STATE OF THE ST |    |                           |               |      |                                   | 45                                | 11/12                |                             |                                   |                                            |                                   |   |
| 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                           |               |      | -7/                               |                                   |                      |                             |                                   |                                            |                                   |   |
| 87 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                           |               |      | NA K                              | X,                                |                      |                             |                                   |                                            | a-                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                           |               | , '  | 1                                 |                                   |                      |                             |                                   |                                            | 87                                |   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                           | <b>*</b>      | Ø,   | 1                                 |                                   |                      |                             |                                   |                                            |                                   |   |

# 热物理 常用建筑材料热物理性能计算参数 附录 J

J. 0. 1

表 J.0.1 常用建筑材料的热物理性能计算参数 1

|   |     | ₹,                                     | 10.11 吊月         | 建规例作          | 的热物理性能闪                   | 异学双 <sub>、</sub> \ | K 1/1                    |
|---|-----|----------------------------------------|------------------|---------------|---------------------------|--------------------|--------------------------|
|   |     | Liky                                   | 干密度              |               | 计算参                       | 数                  |                          |
|   | 材料  | 材料名称                                   | P <sub>0</sub> / | 导热系数λ∕        | 蓄热系数 S                    | 比热容 C/             | 蒸汽渗透系数                   |
|   | 子类  | 22,7                                   | $(kg/m^3)$       | [W/<br>(m·K)] | (周期 24 小时)/               | (kJ/               | $\mu (\times 10^{-4}) /$ |
|   | 7/  | PER PAR MEN NET I                      |                  |               | [W/ (m <sup>2</sup> · K)] | (kg · K ) ]        | [g/ (m·h·Pa)]            |
|   | X   | · \ 钢筋混凝土                              | 2 500            | 1.740         | 17.20                     | 0.92               | 0.158                    |
|   | × × | 碎石、卵石混凝土                               | 2 300            | 1.510         | 15.36                     | 0.92               | 0.173                    |
|   |     | 7 4 7 7 4 10 90 ==                     | 2 100            | 1.280         | 1,3:57                    | 0.72               | 0.173                    |
|   |     | 沥青混凝土                                  | 2 100            | 1.050         | 16.39                     | 1.68               | _                        |
|   |     |                                        | 2 000            | 0.770         | 10.49                     |                    |                          |
|   |     | 膨胀矿渣珠混凝土                               | 1 800            | 0.630         | 9.05                      | 0.96               | _                        |
|   |     |                                        | 1 600            | 0.530         | 7.87                      |                    | 11                       |
|   |     | 自然煤干石、 炉渣混凝土 🦠                         | 1 700            | 1.000         | 11.68                     |                    | 0.548                    |
|   | 普通  |                                        | 1500             | 0.760         | 9.54                      | 1.05               | 0.900                    |
|   | 混凝  | ~                                      | 300              | 0.560         | 7.63                      |                    | 1.050                    |
|   | 土   | 17 XX                                  | 1 700            | 0.950         | 11.40                     |                    | 0.188                    |
|   |     | 粉煤灰陶粒混凝土                               | 1 500            | 0.700         | 9.16                      | .05                | 0.975                    |
|   | 2   | 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 300            | 0.570         | 7.78                      |                    | 1.050                    |
|   |     | ×'                                     | 1 100            | 0.440         | 6.30                      | 1                  | 1.350                    |
|   |     |                                        | 1 600            | 0.840         | 10.36                     |                    | 0.315                    |
|   |     |                                        | 1 400            | 0.700         | 8.93                      |                    | 0.390                    |
|   |     | 黏土陶粒混凝土                                | 1 200            | 0.530         | 7.25                      | 1.05               | 0.405                    |
|   |     |                                        | 1 000            | 0.220         | 4.08                      |                    | _                        |
|   |     |                                        | 800              | 70.120        | 2.70                      |                    | _                        |
|   |     |                                        | V                | <\)^          |                           |                    |                          |
|   | _   | _                                      | N/X              | <b>Y</b>      |                           |                    |                          |
|   | 88  | 8                                      |                  |               |                           |                    |                          |
|   |     |                                        | //,              |               |                           |                    |                          |
|   |     |                                        | > '              |               |                           |                    |                          |
| _ |     |                                        |                  |               |                           |                    |                          |

|    |          |                  |                               |                 |                                                   | KI N           |                                                  |     |
|----|----------|------------------|-------------------------------|-----------------|---------------------------------------------------|----------------|--------------------------------------------------|-----|
|    |          |                  |                               | 1               |                                                   | 续表             | -                                                |     |
|    | 材料子类     | 材料名称             | 干密度<br>$ ho_0/$<br>$(kg/m^3)$ | 导热系数》/<br>m·K)] | 计算参<br>蓄热系数 <i>S</i><br>(周期 24 小时)/<br>[W/(m²·K)] | 比热容 C/<br>[kJ/ | 蒸汽渗透系数<br>μ(×10 <sup>-4</sup> )/<br>[g/(m・h・Pa)] |     |
|    |          | 页岩渣、石灰、<br>水泥混凝土 | 1 300                         | 0.520           | 7.39                                              | 0.98           | 0.855                                            |     |
|    |          | 7,700,100,000    | 1 500                         | 0.770           | 9.65                                              |                | 0.816                                            |     |
|    |          | 页岩陶粒混凝土          | 1 300                         | 0.630           | 8.16                                              | 1.05           | 0.390                                            |     |
|    | 普通<br>混凝 | 11/1/2           | 1 100                         | 0.500           | 6.70                                              | W.             | 0.435                                            |     |
|    | 土        | 火山灰淹、沙、<br>水泥混凝土 | 1 700                         | 0.570           | 6.30                                              | 0.57           | 0.385                                            |     |
|    | ×        | Ži,              | 1 500                         | 0.670           | 9.09                                              | 7              | _                                                |     |
| N. |          | 浮石混凝土            | 1 300                         | 0.530           | 7,54                                              | 1.05           | 0.188                                            |     |
|    |          |                  | 1 100                         | 0.420           | 6.13                                              |                | 0.353                                            |     |
|    |          |                  | 551 ~ 650                     | 0.160           | 2.70                                              |                |                                                  |     |
| V. |          | 轻质混凝土            | 651 ~ 750                     | 0.180           | 3.09                                              |                | - 31                                             |     |
|    |          |                  | 751 ~ 850                     | 0.200           | 3.48                                              | 1.05           |                                                  | . > |
|    |          |                  | 851 ~ 950                     | 0.230           | 3.96                                              |                |                                                  |     |
|    |          |                  | 951 ~ 1 050                   | 0.260           | 4.44                                              |                |                                                  | )   |
|    |          |                  | 1 150                         | 0.280           | 4.83                                              |                |                                                  |     |
|    |          |                  | 1 151 ~                       | 0.310           | 5.31                                              | _              | 117                                              |     |
|    | 轻混       | NA XX            | 1 251 ~<br>1 350              | 0.360           | 5.96                                              |                | 5                                                |     |
|    | 凝土       |                  | 300                           | 0.080           | 1.42                                              | · , X          |                                                  |     |
|    |          |                  | 400                           | 0.100           | 1.81                                              | 7              |                                                  |     |
|    | 1        |                  | 500                           | 0.120           | 2.20                                              | 1              |                                                  |     |
|    |          | 泡沫混凝土            | 600                           | 0.140           | 259                                               | 1.05           | _                                                |     |
|    |          | 但外形员工            | 700                           | 0.180           | 3.16                                              | 1.03           |                                                  |     |
|    |          |                  | 800                           | 0.210           | 3.64                                              |                |                                                  |     |
|    |          |                  | 900                           | 0.240           | 4.12                                              |                |                                                  |     |
|    |          |                  | 1 000                         | Ø.270           | 4.59                                              |                |                                                  |     |
|    |          |                  |                               |                 |                                                   |                | 89                                               |     |
|    |          | V                |                               |                 |                                                   |                |                                                  |     |

|      |               |                                 |                                 |           |                           | X1 '           |                                  |      |
|------|---------------|---------------------------------|---------------------------------|-----------|---------------------------|----------------|----------------------------------|------|
|      |               |                                 |                                 |           | -3/1/70                   | <b>)</b>       |                                  |      |
|      |               |                                 |                                 |           | XX                        |                |                                  |      |
|      |               |                                 |                                 | 4         |                           |                | 续表                               |      |
|      |               |                                 | 干密度                             | , 4       | 计算参                       | 数              |                                  |      |
|      | 材料<br>子类      | 材料名称                            | $\rho_0$ / (kg/m <sup>3</sup> ) | 导热系数》》    | 蓄热系数 S<br>(周期 24 小时)/     | 比热容 C/<br>[kJ/ | 蒸汽渗透系数<br>μ(×10 <sup>-4</sup> )/ |      |
|      |               |                                 | ( kg/III )                      | m · K ) ] | [W/ (m <sup>2</sup> · K)] | ( kg · K ) ]   | [g/ (m · h · Pa)]                |      |
|      |               |                                 | 350                             | 0.100     | 1.51                      | _              |                                  |      |
|      | <i>t</i> 7 ∤H |                                 | (50                             | 0.120     | 1.91                      | _              | X                                |      |
|      | 轻混<br>凝土      | 蒸压加气混凝土                         | 550                             | 0.140     | 2.31                      | 1.05           | 1.110                            |      |
|      |               | AHY!                            | 650                             | 0.160     | 2.71                      | =              | \ <u>\</u>                       |      |
|      |               |                                 | 750                             | 0.180     | 3.10                      | 1.03           | 0.998                            |      |
|      | 4             | //水泥砂浆                          | 1 800                           | 0.930     | 11.37                     | 1.05           | 0.210                            |      |
|      | XX            | 右灰水泥砂浆                          | 1 700                           | 0.870     | 10.75                     | 1.05           | 0.975                            |      |
| , iž | >             | 石灰砂浆                            | 1 600                           | 0.810     | 10.07                     | 1.05           | 0.443                            |      |
|      |               | 石灰石膏砂浆                          | 1 500                           | 0.760     | 2.44                      | 1.05           | _                                |      |
|      |               | 无机保温砂浆                          | 600                             | 0.180     | 2.87                      | 1.05           | _                                | _    |
| V    | 砂浆            | 元が保証が永                          | 400                             | 0.140     | ナ -                       | _              | _                                |      |
|      |               | 无机轻集料<br>保温砂浆                   | ≤350                            | 0.000     | 1.26                      | 1.05           | _                                | X1 \ |
|      |               |                                 | ≤450×                           | 0.085     | 1.61                      |                | - (1)                            |      |
|      |               |                                 | ≤550                            | 0.100     | 1.95                      |                | (1);                             |      |
|      |               | 胶粉聚苯颗粒 🏏                        | 400                             | 0.090     | 0.95                      |                | X 1                              |      |
|      |               | 保温砂浆                            | 300                             | 0.070     | _                         |                | 117                              |      |
|      |               | 重砂浆砌筑烧结<br>普通传砌体                | 1 800                           | 0.810     | 10.63                     | 1.05           | 1.050                            |      |
|      |               | 轻砂浆砌筑烧结<br>普通传砌体                | 1 700                           | 0.760     | 9.96                      | 1,05           | 1.200                            |      |
|      |               | 灰砂砖砌体                           | 1 900                           | 1.100     | 12.72                     | 1.05           | 1.050                            |      |
|      | 砌体            | 硅酸盐砖砌体                          | 1 800                           | 0.870     | 1150%                     | 1.05           | 1.050                            |      |
|      |               | 炉渣砖砌体                           | 1 700                           | 0.810     | 10.43                     | 1.05           | 1.050                            |      |
|      |               | 蒸压粉煤灰砖砌体                        | 1 520                           | 0.740     | × // –                    | _              | _                                |      |
|      |               | 重砂浆砌筑 26、<br>33 及 36 孔多孔<br>砖砌体 | 1 400                           | 0.580     | 7.92                      | 1.05           | 0.158                            |      |
| l l  |               |                                 | .=                              | , (()     |                           |                | l                                | J    |
|      |               |                                 | N/AR                            | X-\'      |                           |                |                                  |      |
|      | 90            | )                               | (IXX)                           | V         |                           |                |                                  |      |
|      |               |                                 | 111,                            |           |                           |                |                                  |      |
|      |               |                                 | >/                              |           |                           |                |                                  |      |
|      |               | V                               |                                 |           |                           |                |                                  |      |

|  |      |                                                                                                          |                                | 1                | The state of the s |                | 续表                                               | - |  |  |
|--|------|----------------------------------------------------------------------------------------------------------|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|---|--|--|
|  | 材料子类 | 材料名称                                                                                                     | 干密度<br>$\rho_0$ /<br>( kg/m³ ) | 导热系数》/<br>(m·K)] | 计算参<br>蓄热系数 <i>S</i><br>(周期 24 小时)/<br>[W/(m²·K)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 比热容 C/<br>[kJ/ | 蒸汽渗透系数<br>μ(×10 <sup>-4</sup> )/<br>[g/(m·h·Pa)] |   |  |  |
|  | 砌体   | 模数多孔砖砌体<br>(13排孔)                                                                                        | 1 230                          | 0.460            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                  |   |  |  |
|  |      | KP1 烧结多孔砖砌<br>体 240×115× <b>9</b> 0                                                                      | 250                            | 0.510            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ZX±                                              |   |  |  |
|  |      | 节能型烧结空心砌<br>块(孔排数→)<br>排、孔洞率≥<br>50%、砌体                                                                  | 801 ~ 900                      | 0.400            | 6.00<br>4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1706           | _                                                |   |  |  |
|  |      | 學學學<br>快(外壁厚≥<br>25 mm 孔排数≥7<br>排,孔洞率≥<br>45%)砌体                                                         | 801 ~ 900                      | 0.300            | 4.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05           | I                                                |   |  |  |
|  |      | 无机复合烧结空心<br>砖(规格:长<br>200 mm,厚<br>190 mm,厚<br>115 mm,填充厚度<br>为 40 mm、密度等<br>级为 B03 级及以下<br>的泡沫混凝土)<br>砌体 | ≤800                           | W 9.200          | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05           | -                                                |   |  |  |
|  |      | 烧结陶粒混凝土水型空心砌块砌体<br>(孔排数≥3.排                                                                              | 801 ~ 900                      | 0.280            | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -              |                                                  |   |  |  |
|  | 纤维材料 | 矿棉板                                                                                                      | 80 ~ 180                       | 0.050            | 0.60 ~ 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/22           | 4.880                                            |   |  |  |
|  |      | 者棉板                                                                                                      | ≥140                           | 0.040            | 0.47 ~ 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.22           | 4.880                                            |   |  |  |
|  |      | 岩棉带                                                                                                      | ≥100                           | 0.048            | 0.47 ~ 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.22           | 4.880                                            |   |  |  |
|  |      | 玻璃棉板、毡                                                                                                   | ≤40<br>≥40                     | 0.040<br>0.035   | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22           | 4.880                                            |   |  |  |
|  |      | 麻刀                                                                                                       | 150                            | 0.070            | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.10           | _                                                |   |  |  |
|  |      | 聚酯纤维棉                                                                                                    | 30 ~ 40                        | 0.039            | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22           | 4.880                                            |   |  |  |
|  |      | 纤维棉复合隔声垫                                                                                                 | ≥120                           | 0.045            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              | _                                                |   |  |  |
|  |      |                                                                                                          | NI/AR                          | XX,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 91                                               |   |  |  |
|  |      |                                                                                                          | > '                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |   |  |  |

|      |          |                 |                       |            | >                                      |                 |                                        |          |
|------|----------|-----------------|-----------------------|------------|----------------------------------------|-----------------|----------------------------------------|----------|
|      |          |                 |                       |            |                                        |                 |                                        |          |
|      |          |                 |                       | 1          |                                        |                 | 续表                                     |          |
|      | 材料子类     | 材料名称            | 工家座                   | 计算参数       |                                        |                 |                                        |          |
|      |          |                 | 干密度<br><i>ρ₀</i> /    | 导热系数ル      | 蓄热系数 S                                 | 比热容 C/          | 蒸汽渗透系数                                 |          |
|      |          |                 | ( kg/m <sup>3</sup> ) | (m·K)]     | (周期 24 小时)/<br>[W/(m <sup>2</sup> ·K)] | [kJ/<br>(kg·K)] | $\mu (\times 10^{-4}) /$ [g/ (m·h·Pa)] |          |
|      | 膨胀珍珠     | 水泥膨胀珍珠岩         | 800                   | 0.260      | 4.37                                   |                 | 0.420                                  |          |
|      |          |                 | 600                   | 0.210      | 3.44                                   | 1.17            | 0.900                                  |          |
|      | 岩、       |                 | 400                   | 0.160      | 2.49                                   | , 7             | 1.910                                  |          |
|      | 蛭石<br>制品 | 沥青、乳化沥青         | 400                   | 0.120      | 2.28                                   | 11/2            | 0.293                                  |          |
|      | माम हैपा | 膨胀珍珠岩           | 300                   | 0.093      | 1.77                                   | 1:55            | 0.675                                  |          |
|      | X        | 聚乙烯泡沫塑料         | 100                   | 0.047      | 0.70                                   | 1.38            | _                                      |          |
|      |          | N.              |                       | 0.039      | 1/2                                    | 7               |                                        |          |
| N    |          | 聚苯乙烯泡沫塑料        | 20                    | (白板)       | 0.28                                   | 1.38            | 0.162                                  |          |
| 1/2  |          |                 |                       | (灰板)       |                                        |                 |                                        |          |
|      | 泡材及多聚    | 挤塑聚苯乙烯泡沫<br>塑料  | 25                    | (帯表皮)      | 0.24                                   | 1 20            | _                                      |          |
| Min. |          |                 | 35                    | 0.032      | 0.34                                   | 1.38            |                                        |          |
|      |          | 聚氨酯硬泡沫塑料        | 35                    | 0.024      | 0.29                                   | 1.38            | 0.234                                  | 1        |
|      |          | 酚醛板             | 60                    | 0.034      |                                        | _               | - 3                                    | <u>,</u> |
|      |          |                 |                       | (用 <u></u> | _                                      |                 |                                        | .)       |
|      |          |                 | XXX                   | (用于地面)     |                                        |                 | X-77.                                  |          |
|      |          | 真空绝热板           | 250 ~ 300             | 0.005      | 0.70                                   | _               |                                        |          |
|      |          |                 | 350 ~ 450             | 0.008      | 0.70                                   |                 | 1/2-                                   |          |
|      | 物        | 气凝胶绝热制品         | 120 ~ 200             | 0.025      | 0.35                                   | -\3             | <i>&gt;</i> –                          |          |
|      |          | 不燃型系求颗粒<br>复合板  | 130 ~ 200             | 0.065      | 0.90                                   |                 | _                                      |          |
|      |          | 7/,             | 240 ~ 270             | 0.070      | 1.00                                   | > _             | _                                      |          |
|      |          | 膨胀玻化微珠无机<br>保温板 | (I型)<br>270~300       | *****      |                                        | 1               |                                        |          |
|      |          |                 | (Ⅱ型)                  | 0.080      | 1/20/                                  | _               | _                                      |          |
|      |          | 聚氯乙烯硬泡沫<br>塑料   | 130                   | 0.048      | 0.79                                   | 1.38            | _                                      |          |
|      |          | 钙塑              | 120                   | 0.049      | 0.83                                   | 1.59            | _                                      |          |
|      |          | 发泡水泥            | 150 ~ 300             | 0,070      | _                                      | _               | _                                      | $\dashv$ |
|      |          | 泡沫玻璃            | 140                   | 0.050      | 0.65                                   | 0.84            | 0.225                                  |          |
|      |          |                 |                       |            |                                        |                 |                                        |          |
|      | 92       | 2               | (IXX)                 | •          |                                        |                 |                                        |          |
|      |          |                 | 111.                  |            |                                        |                 |                                        |          |
|      |          |                 | >,                    |            |                                        |                 |                                        |          |
|      |          | V               |                       |            |                                        |                 |                                        |          |

|      |          |                |                                |                |                                        | X1              |                                                   |           |
|------|----------|----------------|--------------------------------|----------------|----------------------------------------|-----------------|---------------------------------------------------|-----------|
|      |          |                |                                |                | -31/100                                |                 |                                                   |           |
|      |          |                |                                |                | XX.                                    |                 |                                                   |           |
|      |          |                |                                | 4              |                                        |                 | 续表                                                |           |
|      |          |                |                                |                | 计算参                                    | 数               |                                                   | 1         |
|      | 材料       | 材料名称           | 干密度<br><i>p</i> <sub>0</sub> / | 导热系数λ/         | 蓄热系数 S                                 | 比热容 C/          | 蒸汽渗透系数                                            |           |
|      | 子类       |                | ( kg/m <sup>3</sup> )          | (m·K)]         | (周期 24 小时)/<br>[W/(m <sup>2</sup> ·K)] | [kJ/<br>(kg·K)] | $\mu (\times 10^{-4}) / [g/(m \cdot h \cdot Pa)]$ |           |
|      |          |                | 180                            | 0.065          | 0.80                                   | 0.80            | -\\\\                                             |           |
|      | 泡沫<br>材料 | 发泡陶瓷           | 230                            | 0.080          | 1.20                                   | 0.80            | 1//                                               |           |
|      | 及        | 泡沫石膏           | 500                            | 0.190          | 2.78                                   | 1.05            | Z X0.375                                          |           |
|      | 多孔<br>聚合 | 交联聚乙烯隔声<br>保温型 | ≥35                            | 0.040          | _                                      | -11             | (j\) -                                            |           |
|      | 物        | 微孔聚脲隔声<br>保温垫  | ≥50                            | 0.035          | _                                      | KIT.            | _                                                 |           |
|      | 7        | 胶合板            | 600                            | 0.170          | 4.57                                   | 2.51            | 0.225                                             |           |
|      | X        | 软木板            | 300                            | 0.093          | 1.95                                   | 1.89            | 0.255                                             | -         |
| , IX | <u>`</u> |                | 150                            | 0.058          | 71.09                                  | 2.51            | 0.285                                             |           |
|      |          | 纤维板            | 1000                           | 0.340          | 8,13                                   |                 | 1.200                                             |           |
|      |          | <b>大京</b> 4    | 600                            | 0.230          | 5.28                                   |                 | 1.130                                             | $\Delta$  |
| V    |          | 石膏板            | 1 050                          | 0.330          | 5.28                                   | 1.05            | 0.790                                             |           |
|      |          | 纸面石膏板<br>纤维石膏板 | 1 100                          | 0.300          | 4.73<br>5.20                           | 1.16            |                                                   | × ×1      |
|      |          | 石棉水泥板          | 1 800                          | 0.520          | 8.52                                   | 1.05            | - 1/                                              | \$\lambda |
|      |          | 石棉水泥隔热板        | <b>1500</b>                    | 0.160          | 2.58                                   | 1.05            | 4-3                                               | /         |
|      | 建筑       | 水泥刨花板~         | 1 000                          | 0.340          | 7.27                                   | 2.01            |                                                   |           |
|      | 板材       |                | 700                            | 0.190          | 4.56                                   |                 | 12                                                |           |
|      |          | 稻草板            | 300                            | 0.130          | 2.33                                   | 1.68            | 3.000                                             |           |
|      |          | 木屑板            | 200                            | 0.065          | 1.54                                   | 2.10            | 2.630                                             |           |
|      |          | 硬质 PVC 板       | 1 400                          | 0.160          | - <                                    | 7. 7.           | _                                                 |           |
|      |          | 铝塑复合板          | 1 380                          | 0.450          |                                        | ) –             | _                                                 |           |
|      |          | 钙塑泡沫板          | 250                            | 0.074          |                                        | _               | _                                                 |           |
|      |          | 轻质硅酸钙板         | 500                            | 0.116          | W                                      | _               | _                                                 |           |
|      |          |                | ≤950<br>950 ~ 1 200            | 0.200          | Z.                                     |                 |                                                   |           |
|      |          | 纤维增强硅酸钙板       | 1 201 ~ 1 400                  | 0.250<br>0.300 | ΥΥ' _                                  | _               | _                                                 |           |
|      |          |                | >1 400                         | 0.350          |                                        |                 |                                                   |           |
|      |          |                | N/A                            | Z - \          | <u>I</u>                               | l               | <u>I</u>                                          | J         |
|      |          |                |                                |                |                                        |                 | 93                                                |           |
|      |          |                | //,                            |                |                                        |                 |                                                   |           |
|      |          |                | >                              |                |                                        |                 |                                                   |           |

|     |     |                     |                        |           | Ya.                       | X1                                    |                                       |          |
|-----|-----|---------------------|------------------------|-----------|---------------------------|---------------------------------------|---------------------------------------|----------|
|     |     |                     |                        |           |                           | >                                     |                                       |          |
|     |     |                     |                        |           | 137.                      |                                       |                                       |          |
|     |     |                     |                        | ,         |                           |                                       | 续表                                    |          |
| Ī   |     |                     |                        | <i>Y</i>  | 计算参                       | *khr                                  |                                       | 1        |
|     | 材料  | ++                  | 干密度                    | 导热系数》     | 蓄热系数 S                    | 数<br>比热容 C/                           | 蒸汽渗透系数                                |          |
|     | 子类  | 材料名称                | $\rho_0/$ $( kg/m^3 )$ | TW.       | (周期 24 小时)/               | [kJ/                                  | $\mu$ ( $\times$ 10 <sup>-4</sup> ) / |          |
|     |     | EU leit 545         | 1.000.4                | m · K ) ] | [W/ (m <sup>2</sup> · K)] | ( kg · K ) ]                          | [g/ ( m · h · Pa ) ]                  |          |
|     |     | 锅炉渣                 | 1 000                  | 0.290     | 4.40                      | 0.92                                  | 1.930                                 |          |
|     |     | 粉煤灰 高炉炉渣 "          | 75000 <sub>1</sub> /   | 0.230     | 3.93                      | 0.92                                  | 2.030                                 |          |
|     |     | 浮石、凝灰岩              |                        | 0.260     | 3.92                      | 0.92                                  | 7 -                                   |          |
|     | 松散  | 水泥膨胀蜂石              | 350                    | 0.230     | 3.05<br>1.99              | 0.92<br>1.05                          | 2.630                                 | ,        |
|     | 无机  | TO THE MESSAGE      | 300                    | 0.140     | 1.79                      | 13/4/2                                | /                                     |          |
|     | 材料  | <b>膨胀蛭</b> 石        | 200                    | 0.140     | 1.79                      | .05                                   | _                                     |          |
|     |     | 硅藻土                 | 200                    | 0.076     | 1.00                      | 0.92                                  | _                                     |          |
|     | XX  | <i>y</i> \/         | 120                    | 0.070     | 0.84                      | Z 0.52                                |                                       |          |
| Ţ.  |     | 膨胀珍珠岩               | 80                     | 0.058     | 70.63                     | 1.17                                  | _                                     |          |
| 1/1 | 松散  | 木屑                  | 250                    | 0.093     | 7, 1.84                   | 2.01                                  | 2.630                                 | $\wedge$ |
|     | 有机  | 稻壳                  | 120                    | 0.060     | 1.02                      | 2.01                                  | _                                     |          |
|     | 材料  | 干草                  | 100                    | 0.047     | 0.83                      | 2.01                                  | _                                     |          |
| Ì   |     | 橡木、枫树(热流<br>方向垂直木纹) | 700                    | 01/170    | 4.90                      | 2.51                                  | 0.562                                 | XI       |
|     | **  | 橡木、枫树(热流<br>方向顺木纹)  | 700                    | 0.350     | 6.93                      | 2.51                                  | 3.000                                 |          |
|     |     | 松木、云杉(热流<br>方向垂直木纹) | \$500 <sup>-</sup>     | 0.140     | 3.85                      | 2.51                                  | 0,345                                 | /        |
|     |     | 松木、云杉(热流<br>方向顺木纹)  | 500                    | 0.290     | 5.55                      | 2.51                                  | 1.680                                 |          |
|     |     | 夯实额土                | 2 000                  | 1.160     | 12.99                     | 1 01                                  | 5 –                                   | ]        |
|     |     |                     | 1 800                  | 0.930     | 11.03                     | 1.01                                  |                                       |          |
|     | 土壤、 | 加草黏土                | 1 600                  | 0.760     | 9.37                      | 1.01                                  |                                       |          |
|     | T-% | 加于和工                | 1 400                  | 0.580     | 7.69                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                       |          |
|     | 1   | 轻质黏土                | 1 200                  | 0.470     | 6.36                      | 1.01                                  |                                       |          |
|     |     | 建筑用砂                | 1 600                  | 0.580     | 18.26                     | 1.01                                  |                                       | 1        |
|     |     | 花岗石、玄武岩             | 2 800                  | 3.490     | 25.49                     | 0.92                                  | 0.113                                 | 1        |
|     |     | 大理石                 | 2 800                  | 2.910     | 23.27                     | 0.92                                  | 0.113                                 |          |
|     | 石材  | 砾石、石灰岩              | 2 400                  | 2.040     | 18.03                     | 0.92                                  | 0.375                                 |          |
|     |     | 石灰石                 | 2 000                  | 12,160    | 12.56                     | 0.92                                  | 0.600                                 |          |
|     | 94  |                     | N/AR                   | XX,       |                           | 1                                     | 1                                     | 1        |
|     |     | A .                 | 111,                   |           |                           |                                       |                                       |          |
|     |     |                     | >/                     |           |                           |                                       |                                       |          |

|     |          |                  |                 | <i>₹</i>                 | (大) (1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | , Ka                      |                                   |
|-----|----------|------------------|-----------------|--------------------------|------------------------------------------------|---------------------------|-----------------------------------|
|     |          |                  |                 | 7/1/2                    | ,                                              |                           | 续表<br>                            |
| ١.  | Lifet    |                  | 干密度《            | Z KY                     | 计算参                                            | 数                         |                                   |
|     | 材料<br>子类 | 材料名称             | $\rho_0$ (kg/m) | 导热系数 λ/<br>[W/<br>(m・K)] | 蓄热系数 S<br>(周期 24 小时)/<br>[W/(m²·K)]            | 比热容 C/<br>[kJ/<br>(kg・K)] | 蒸汽渗透系数<br>μ(×10 /<br>[g/(m·h·Ra)] |
|     | 卷材、      | SBS 改性沥青防水<br>卷材 | 900             | 0.230                    | 9.37                                           | 1.62                      | XI                                |
|     |          | APP 改性沥青防水<br>卷林 | 1 050           | 0.230                    | 9.37                                           | 1.62                      | _                                 |
| 木   |          | 合成高分子防水<br>卷材    | 580             | 0.150                    | 6.07                                           | 114                       | -                                 |
|     | 历青 *     | <b>派青油毡、油毡纸</b>  | 600             | 0.170                    | 3.33                                           | 1.47                      | _                                 |
| ٦,١ |          | / 沥青混凝土          | 2 100           | 1.050                    | 16.39                                          | 1.68                      | 0.075                             |
|     |          | 石油沥青 1 400       | 1 400           | 0.270                    | 6.73                                           | 1.68                      | _                                 |
|     |          | H IM 64 H        | 1 050           |                          | 4.71                                           | 1.00                      | 0.075                             |
| Ð   | 皮璃       | 平板玻璃             | 2 500           | 0.760                    | 10.69                                          | 0.84                      | _                                 |
| -2  | X-1-3    | 玻璃钢              | 1 800           | 0.520                    | J 9.25                                         | 1.26                      | _                                 |
|     |          | 紫铜               | 8 500           | 407.000                  | 324.00                                         | 0.42                      | _                                 |
|     |          | 青铜               | 8 000           | 64.000                   | 118.00                                         | 0.38                      | - (1)                             |
| 4   | 定属       | 建筑钢材             | 7 850           | 58.200                   | 126.00                                         | 0.48                      | -311                              |
|     |          | 铝                | 2700            | 203.000                  | 191.00                                         | 0.92                      | XXX                               |
|     |          | 铸铁               | 7 250           | 49.900                   | 112.00                                         | 0.48                      | ~ <del>`</del>                    |

在围护结构正常使用条件下,材料的热物理性能计算参数可按本表直接采用。

保温材料的导热系数计算值和蓄热系数计算值应按下列公式修正

 $\lambda_{c} = \lambda \cdot \alpha, S_{C} = S \cdot \alpha$ 

λ, S——材料的导热系数和蓄热系数;

 $\alpha$ ——修正系数,按表 J.0.2 采用。

3 表中比热容 C 的单位为法定单位。但在实际计算中比热容 C 的单位应取  $W \cdot h$ / (kg·°C), 因此表中数值应乘以换算系数 0.277 8。

4 数据来源包括现行国家标准《民用建筑热工设计规范》GB 50176、现行地方标准 《四川省建筑工程岩棉制品保温系统技术规程》DBJ51/T 042、《四川省膨胀玻化微 珠无机保温板建筑保温系统应用技术规程》DBJ51/T 070、《四川省不燃型聚苯颗

..本温工程技术标准》DBJST/T 150 等。 即用模拟排射 即加州為民族縣

| J. 0. 2 | 常用建筑材料导热系数<br>表 J.0.2 常用建筑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 文的修正系数应按表 J.0. | 2 取值。 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 序号      | 材料名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 使用范围           | 修正系数  |
| 71 3    | 44 41 41 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 用于外墙           | 1.20  |
| 1       | 聚苯乙烯泡沫塑料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 用于屋面           | 1.20  |
| 1       | Ma Maria Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 用于内保温          | 1.15  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于外墙           | 1.15  |
| 2       | <b>济</b> 塑聚苯乙烯泡沫塑料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 用于屋面           | 1.20  |
| 23      | A THE STATE OF THE | 用于内保温          | 1.05  |
| X       | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 用于屋面及楼地面保温     | 1.25  |
| 3       | 不燃型聚苯颗粒复合板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 用于外墙外保温及架空楼板   | 1.20  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于外墙内保温        | 1.15  |
| 4       | 酚醛板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 用于外墙           | 1.15  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于外墙           | 1.10  |
| 5       | 聚氨酯泡沫塑料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 用于屋面           | 1.15  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于内保温          | 1,05  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于外墙、架空楼地面     | 1.40  |
| 6       | 真空绝热板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 用于屋面           | 1.60  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于内保温          | 1.10  |
| 7       | 气凝胶复合保温板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 用于内保温          | 1.05  |
| 80      | 胶粉聚苯颗粒保温砂浆<br>(适宜于温和B区)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 用于外墙           | 1.30  |
| 9       | 无机保温砂浆<br>(适宜于温和 B 区)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 用于外墙           | 1.30  |
| T       | ᄜᄱᄱᅲᄱᄼᇄᄼᄱᆘᆉᅷᅷᄓᄱᄭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 用于外墙外保温        | 1.20  |
| 10      | 膨胀玻化微珠无机保温板<br>(用于温和B区)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 用于外墙内保温        | 1.30  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用于屋面及楼地面保温系统   | 1.25  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 97    |

|   |      |                                        | X          |               |     |
|---|------|----------------------------------------|------------|---------------|-----|
|   |      |                                        | 长潮煤料       |               |     |
|   |      |                                        | 112        | 续表            |     |
|   | 序号   | 材料名称                                   | 使用范围       | 修正系数          |     |
| - | 11   | 页岩陶粒混凝土                                | 用于屋面       | 1.50          | ĺ   |
| • | 12   | 轻质混凝土                                  | 用于分户楼板、地面  | 1.20          | ]   |
| • | 1.2  | 蒸压加气混凝土                                | 用于墙体       | 1.28          | ]   |
|   | 13   |                                        | 用于屋面       | <b>У</b> 1150 |     |
|   |      | X Mark NEW I                           | 用于分户楼板     | 1.20          | ]   |
|   | 14   | <b>泡</b> 沫混凝土                          | 用于屋面       | 1.50          | 1   |
| - | 15 > | 岩棉板、岩棉带                                | 用于外墙       | 1.30          | j   |
| - | 76.  | 玻璃棉板、毡                                 | 用于屋面、外墙    | 1.30          | 1   |
| N | 17   | 纤维棉复合隔声垫                               | 用于外户楼板     | 1.15          | j   |
|   | 18   | 2/1 24- 110 135                        | 用于外墙、架空楼地面 | 1.05          | 1   |
|   |      | 泡沫玻璃、发泡陶瓷                              | 用于屋面       | 1.20          |     |
| V | 19   | 交联聚乙烯隔声保温垫                             | 用于分户楼板     | 1.20          |     |
| • | 20   | 微孔聚脲隔声保温垫                              | 用于分户楼板     | 1.15          | ×1, |
|   |      | <b>國扎聚豚南</b> 戸保温墊                      |            |               |     |
|   | 98   | 11111111111111111111111111111111111111 |            |               |     |

# 附录 K 常用建筑材料太阳辐射吸收系数 p值

表 K 常用围护结构表面太阳辐射吸收系数 $\rho$  值

|         | 1      |             |                |
|---------|--------|-------------|----------------|
| 面层类型    | 表面性质   | 表面颜色        | 太阳辐射吸收<br>系数p值 |
| 石灰粉刷墙面  | 光滑、新   | 白色          | 0.48           |
| 抛光针反射体片 |        | 浅色          | 0.12           |
| 水泥拉毛墙   | 粗糙、旧   | 米黄色         | 0.65           |
| 自水泥粉刷墙面 | 光滑、新   | 98          | 0.48           |
| 水刷石     | 粗糙、旧   | <b>大/浅色</b> | 0.68           |
| 水泥粉刷墙面  | 光滑、新   | 浅灰          | 0.67           |
| 砂石粉刷面   | 3)     | 深色          | 0.58           |
| 白色饰面砖   | 光亮     |             | 0.41           |
| 浅色饰面砖   | MY     | 浅黄、浅白、浅兰、浅灰 | 0.39 ~ 0.48    |
| 深色饰面砖   | (h)    | 红、橙、褐、深灰等   | 0.73 ~ 0.87    |
| 红砖墙     | ,<br>旧 | 红色          | 0.70 - 0.77    |
| 硅酸盐砖墙   | 不光滑    | 黄灰色         | 0.45 ~ 0.50    |
| 混凝土砌块   |        | 灰色          | 0.65           |
| 混凝土墙    | 平滑     | 深灰          | 0.73           |
| 红褐陶瓦屋面  | 旧      | 红褐          | 0.65 ~ 0.74    |
| 灰瓦屋面    | 旧      | 浅灰          | 0.52           |
| 水泥屋面    | 旧      | √豪灰         | 0.74           |
| 水泥瓦屋面   |        | 深灰          | 0.69           |
| 绿豆砂保护屋面 |        | 浅黑色         | 0.65           |
| 白石子屋面   | 粗糙     | 灰白色         | 0.62           |
| 浅色油志毡屋面 | 不光滑 新  | 浅黑色         | 0.72           |
|         | 1 A I  |             |                |

|              |              | 大利技术        | >                       |  |
|--------------|--------------|-------------|-------------------------|--|
|              |              |             |                         |  |
|              |              |             |                         |  |
|              |              |             | 续表                      |  |
| 面层类型         | 表面性质         | 表面颜色        | 太阳辐射吸收<br>系数 <i>p</i> 值 |  |
| 黑色油毛毡屋面      | <b>不光滑</b> 新 | 深黑色         | 0.86                    |  |
| 绿色草地         | 1,3          |             | 0.78 ~ 0.80             |  |
| 水(开阔湖、海面     |              |             | 0.96                    |  |
| 棕色、发色喷泉漆     | 光亮           | 中棕、中绿色      | 0.79                    |  |
| 红涂料。油漆       | 光平           | 大红          | 0.74                    |  |
| 人名色涂料        | 光亮           |             | 0.39                    |  |
| 浅色涂料         | 光亮           | 浅黄、浅红、浅兰、浅灰 | 0.42 ~ 0.49             |  |
| 深色涂料         | 光亮           | 红、深族、橙等     | 0.71 ~ 0.93             |  |
| 白色金属饰面板(金属漆) | 光亮           |             | 0.36                    |  |
| 浅色金属饰面板(金属漆) | 光亮           | 浅黄、浅红、浅兰、浅灰 | 0.39 ~ 0.47             |  |
| 深色金属饰面板(金属漆) | 光亮           | 红、深灰、橙等     | 0.71 ~ 0.83             |  |
|              |              |             | 0.71 ~ 0.83             |  |
| 100          |              |             |                         |  |

即用模拟排列。 即加州為民族縣

IIIIIVA REFERENCE OF THE REPORT OF THE REPO

# は大利性だけ

- 次时区别对待,对要求严格处理,非这样做不可的:

  "采用"必须",反面词采用"严格",不可谓,反面词采用"应"或"不得";
  3)表示允许稍有选择,在条件许可时首先应这样做的:
  正面词采用"宜",反面词采用"不宜";
  4)表示有选择,在一定条件下可以这样做的:采用"可"。
  2 标准中指明应按其他有关标准执行时,写法为:"应符合……的规定(或要求一放"应按……执行"。 1 为便于在执行本标准条文时区别对待,对要求严格程度不同的用词说明如本:
  1)表求很严格,非这样做不可的:
  "正面词采用"必须",反面词采用"严禁";
  2)表示严格,在正常情况下均应这样做的:
  正面词采用"应",反面词采用"不应"或"不得";
  3)表示允许稍有选择,在条件许可时首先应这样做的:正面词采用"宜",反面词采用"不宜":
  4)表示有选择

IIIIIVA REFERENCE OF THE REPORT OF THE REPO IIIIIIA KEFAINA 即加州為民族縣

- 《房间空气调节器能效限定值及能效等级》GB 12021.3 1
- 《家用燃气快速热水器和燃气采暖热水炉能效限定值及能 2 等级》GB 20665
- 《多联式空调(热泵)机组能效限定值及能源 3 GB 21454
- 转速可控型房间空气调节器能效限定值及能源效率等级》

### GB 21455

- 《建筑照明设计标准》GB 50034
- 《民用建筑热工设计规范》GB 50176
- 《城市居住区规划设计标准》GB 50180 8
- 《公共建筑节能设计标准》GB 50189 9
- 《民用建筑节水设计标准》GB 50555 10
- 《建筑节能与可再生能源利用通用规范》GB 5501 11
- 《建筑给水排水与节水通用规范》GB 55020/ 12
- 建筑环境通用规范》GB 55016 13
- 建筑外门窗气密、水密、抗风压性能分级及检测方法》

#### **GB/T** 7106

- 15
- 16 《严寒和寒冷地区居住建筑力能设计标准》JGJ 26
- 《夏热冬冷地区居住建筑节能设计标准》JGJ 134 17

- 具节能气象参数标准》JGJ/T 346 - 《温和地区居住建筑节能设计标准》JGJ 475 20 《四川省公共建筑节能设计标准》DBJ51/143 即用機能排 即加州為民族縣



IIIIIIA KERANIA MARINA 即加州為民族縣

IIIIIVA REFERENCE OF THE REPORT OF THE REPO

# 编制说明

《四川省〈中华人民共和国节约能源法〉实施办法》规定、"县级以上地方人民政府住房城乡建设主管部门应当加强建筑工程执行建筑节能标准的监督管理工作。建筑工程设计、建设、施工、监理和质量监督管理的单位应当严格执行建筑节能标准。"修改后的节能法提出,地方政府可根据本地实际情况,制定严于国家标准或行业标准的地方建筑节能标准。

为深入贯彻《民用建筑节能条例》,提升我省居住建筑节能水平,根据 2016 年 8 月 19 日四川省往房和城乡建设厅发《四川省住房和城乡建设厅关于下达工程建设地方标准〈四川省居住建筑节能设计标准〉修订计划的通知》(川建标发〔2016〕667 号文),对《四川省居住建筑节能设计标准》进行全面修订,中国建筑西南设计研究院有限公司为主编单位,会同四川省建筑设计研究院有限公司、成都市建筑设计研究院有限公司、西南交通大学、四川大学、四川省建筑科学研究院有限公司、台玻成都玻璃有限公司、湖南旗滨节能玻璃有限公司、四川零零吴科技有限公司、四川双花科技发展有限公司、四川省黄氏防腐保温工程有限公司等有类单位共同修订。

标准修订明确提出本标准适用范围包括四川省高海拔严寒地 区、高海拔寒冷地区、夏热冬冷地区、温和地区,从根本上扭转 我省居住建筑用能严重浪费的状况,为实现我省节约能源和保护 环境的战略,贯彻有关政策和法规作出技术保证。在标准的制订 ,我国夏热冬岭地区和四川建筑节龟 。近,借鉴了国内、蜂编制这类标准细则的先边。也区的经济条件和大展建筑节能工作的实际情况了 有关设计、研究、房屋开发商以及建筑节能管理部门的意见 经过反复讨论、修改、充实、最后定稿。

即加州為民族縣

|      |      |            | 次复议次                                             |
|------|------|------------|--------------------------------------------------|
|      |      |            |                                                  |
|      | 1    |            | 则 12                                             |
|      | 3    | 气候         |                                                  |
|      | 4    |            | 与建筑设计                                            |
|      |      | 4.1        |                                                  |
|      | -    | 4.2        | 居住区规划 ······ 118<br>建筑设计 ····· 119               |
| -Si  | īs K | 建筑         |                                                  |
|      |      | 5.1        | 围护结构热工设计                                         |
| (11) |      | 5.2        | 围护结构热工性能权 <b>衡判断</b> · · · · · · · · · · · 124   |
| V    | 6    |            | 通风和空气调节…————————————————————————————————————     |
|      |      | 6.1        | 一般规定125%                                         |
|      |      | 6.2        | 热源、热力或及热力网 · · · · · · · · · · · · · · · · · · · |
|      |      | 6.3        | 供暖系统 129                                         |
|      |      | 6.4        | 通风和登气调节系统 · · · · · · · · · · · · · · · · · · ·  |
|      | 7    | 给水         | 排水····································           |
|      |      | 7.2        | 给水与排水系统······136                                 |
|      | ×    | 12.3       | 生活热水                                             |
|      | 8    | 电          |                                                  |
|      |      | 8.1        | 一般规定·······140                                   |
|      |      | 8.2<br>8.3 | 照 田                                              |
|      |      | 0.5        | 141                                              |
|      |      |            |                                                  |
|      |      | 110        | 一般规定 140<br>供配电系统 140<br>照 明 141                 |
|      |      |            |                                                  |
|      |      |            | V                                                |

- 一般规定 9.2 被动式太阳房 14 9.3 主动式太阳能慢 149 9.4 光伏系统 254 9.5 地源特象系统 156 9.6 空気熱象系统 157 即川港供养制



1.0.1 《中华人民共和国节约能源法》已于 2016 年 7 月修订。该法律明确规定:"建筑节能的国家标准、行业标准由国务院建设主管部门组织制定,并依照法定程序发布。省、自治区、直辖市人民政府建设主管部门可以根据本地实际情况,制定严于国家标准或者行业标准的地方建筑节能标准,并报国务院标准化主管部门和国务院建设主管部门备案。"由此可见,节约能源是我国的基本国策,是建设节约型社会的根本要求,按照国家能源战略的要求,建筑节能势必要迈上更高的台阶。在要求更高的建筑节能标准和绿色建筑标准的情况下,中华人民共和国住房和城乡建设部在 2021 年颁布了《建筑节能与可再生能源利用通用规范》GB 55015—2021。

为了贯彻国家有关节约能源、保护环境的法律法规和政策。 执行好国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2621,根据四川省住房和城乡建设厅的要求。对 2019 年颁布的《四川省居住建筑节能设计标准》进行修订。本标准的 适用范围为四川省高海拔严寒地区、高海拔寒冷地区、夏热冬冷地区、温和地区,名称仍为《四川省居住建筑节能设计标准》。

在标准的修订过程中,调查总结不改省不同气候区近几年来建筑节能的工程实践经验,借鉴了国内外这类标准的先进经验,结合四川地区的经济条件和开展建筑节能工作的实际情况,经广泛征求意见,经过反复讨论、修改、充实,最后定稿。

- 大洲拔型 1.0.2 本条明确本标准的应用范围。 表明四川省内各城镇规划 区新建、改建和扩建的居住建筑必须进行建筑节能设计。居住建 筑主要是住宅建筑,但也包括集体宿舍、住宅式公寓、组合建筑 的住宅部分等。
- 参考国家标准《建筑节能与可再生能源利用通 GB 55015—2021 第 1.0.3 条。

建筑能耗是指建筑使用能耗, 其中包括供暖 应、照明、炊事、家用电器等方面的能耗,一 调的能耗为最大。《标准》是在确保室内热环境的前提下,以降低 供暖与空调的能耗为目的。也就是说《旅淮》从建筑、热工和暖 通空调设计方面提出节能措施和控制指标。

因此,必须根据当地具体的气候条件和技术经济状况,充分 考虑地形条件、偏远地区建林市场供应、民族建筑传统,首先保 证室内热环境质量,提高从民生活水平;与此同时,还要提高供 暖、空调系统的能源利用效率,实现国家的节能目标、可持 展战略和能源发展战略。

《标准》的编写主要依据国家标准《建筑节能与可再生 源利用通用规范》GB 55015—2021、行业标准《严寒和寒冷地区 居住建筑等能设计标准》JGJ 26—2018、《夏热冬冷地区居住建筑 节能设计标准》JGJ 134—2010 和《温和地区居住建筑节能设计标 准》JGJ 475-2019的规定,同时也依据国家现有的有关强制性标 別川州為門港門 准的相关规定。

# 3 气候分区及室内外热环境计算参数

3.0.1 本标准气候分享,按照国家标准《民用建筑热工设计规范》 GB 50176—2016、产建筑热工设计一级区划指标采用最冷月平均气温和最热月平均气温,二级区划指标采用 HDD18 和 CDD26。根据四川省各地的气候条件,综合考虑确定具体分享指标,确定分区边界,划分气候分区。

本标准气象参数采用近 10 年 (2005—2015 年)数据统计计算四川省各气象台站累年平均最冷月、最热月平均干球温度、供暖度日数 HDD18 及空调度日数 CDQ26 等指标。考虑到四川省严寒和寒冷地区的主要影响因素是海拔高度变化引起,冬季绵长、长冬无夏的特点与我国东北和西北地区的气候特征具有明显的差异,故命名为高海拔严寒地区和高海拔寒冷地区。

通过气象数据的地理分布分析发现:四川省区域内,HDD18=2000 % · d 的等高线与最冷月平均温度 3 % 000 % · d 的等高线与最冷月平均温度 0 % 0 等高线与 HDD18=3 000 % · d 的等高线基本吻合;最冷月平均温度—4 % 0 等高线与 HDD18=4500 % · d 的等高线基本吻合。经讨论,综合太阳辐射分布及高原地理环境分界特征,确定最冷月平均温度低于—4 % , HDD18 大于4500 % · d 作为高海拔严寒地区分界指标,寒冷地区的分区指标采用最冷月温度% [—4 % , 3 % ]作为分区边界。与国家标准《民用建筑热工设计规范》GB50176 % 2016 相比,一级分区指标最冷月干球温度分别提高 3 % 6 % , HDD18 提高了20%,综合考虑

了寒冷程度以及寒冷持续时间的影响。鉴于四川省的高海拔严寒 及高海拔寒冷地区属于低纬度高原河谷垂直气候分布特征明显, 提出了海拔高度修正方法,解决了采用县级气象站点数据难以描 述地形变化造成气候区属差异的问题。

对于垂直气候分布特征明显的地区,随着海拔高度增加、气温梯度降低。体标准采取海拔高度修正的方法,即当建设地点位于四川省气候分区图中高海拔寒冷区(II),但该地点海拔高度≥3000m时,该项目地点归属高海拔严寒地区(IV)。同理,当建设地点位于四川省气候分区图夏热冬冷地区(II)。同理,当建设地点海拔高度≥2500m时,该项目地点归属高海拔寒冷地区(II)。但建设地点的海拔高度<2500m时,应根据四川省气候分区图归属相应气候区。

四川省气候分区图见本标准附录 A 中图 A.0.1。

3.0.2 本条文规定的 18 ℃ 只是一个计算温度,主要是用来计算供暖能耗,并不等于实际的设计温度。实际的室内设计温度应根据用户要求及其他相关规范要求综合确定。

换气次数是从人体卫生角度来考虑的另一个重要设计指标。 考虑到高海拔严寒、寒冷地区人们的生活习惯和这一地区冬季室内外温差很大,居民很注意窗户的密闭性,很少长时间开窗通风, 并参考国家标准《民用建筑供暖通风与空气调节设计规范》 GB 50736—2012 的规定,将高海拔严寒、寒冷地区的换气次数取 0.5 次/h。在夏热冬冷、温和地区,和论是冬季或夏季人们普遍有 开窗通风的生活习惯,因此,这一地区确定换气次数由国家规范 规定的 0.5 次/h 提高到 1.0 次和,也与《夏热冬冷地区居住建筑节 能设计标准》相一致。 对于多人宿舍(比如学校宿舍) 应按人员卫生要求最小新风量[30 m³/(h·人)]做复核、含者取大值。

3.0.3 夏季室内温度控制在26~28℃,是国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736—2012 规定对建筑室内夏季空调的设计温度。调查表明,目前使用空调器的家庭,签调运行的设定温度大多数为 26℃左右,基本上达到人们对热舒适条件的要求。本条文规定的 26℃只是一个计算温度、主要是用来计算空保降温能耗,并不等于实际的室温。实际的室内设计温度同样根据用户要求及其他相关规范要求综合确定。

夏季人们比冬季需要更多的新风,因此要确定一个合理的换 气次数。考虑到四川省采用空调地区人们的生活习惯和提高室内 空气质量,换气次数由 0.5 次/h 提高到 1.0 次/h。

3.0.4 采用太阳能供暖的建筑, 无论是主动式、被动式供暖方式都受气候的影响很大, 室内温度难以控制。尤其在川西、川西南太阳能丰富的高海拔地区, 由于大气压力、空气含氧量、相对湿度等因素的影响, 体的热舒适感发生了变化, 因此, 采用太阳能供暖房间的节能设计中应采用本条文规定的参数。

3.0.5 由于四川地区范围广,有山地、平原、河谷、高原等,气候条件多变、复杂,气候差异性很大。受技术经济条件的影响,全省部分市、州、县还没有较完整的建筑气象参数。为了得出相对科学、准确的室外气象参数以及权衡计算典型气象年数据,只能通过实地调查、实测,并参照现有的国家和我省主要城市及邻近台站的气象资料进行比较、充分考虑与地理、气候条件相似性,计算确定室外气象参数以及权衡计算典型气象年(TMY)数据。

# 4 规划与建筑设计

### <sup>\</sup>4.1 一般规定

- 4.1.1 随着全文强制性工程通用技术规范《建筑节能与可再生能源利用通讯规范》GB 55015—2021 于 2022 年 4 月 1 日正式实施,建筑节能要求和标准进一步提高,新建居住建筑的平均设计能耗水平应在 2016 年执行的节能设计标准的基础上降低 30%。
- 本条引自《建筑节能与可再生能源利用通用规范》GB 55015—2021 中 2.0.1 条,同时考虑到成都地区在四川省经济水平的领先地位和技术进步的引领作用,将该区域居住建筑平均节能率定为72%作为高标准地区进行考虑。除高海拔严寒和寒冷地区及成都市以外的其他地区居住建筑平均节能率应达到 68%,并且可根据自身情况参照执行 72% 节能标准。
- 4.1.2 根据《公共建筑节能设计标准》GB 50189—2015 和《四川省公共建筑节能设计标准》DBJ 51/143—2020 中 3.1.1 条的相关要求,将住宅建筑的首层或首层及二层的商店、邮政所、储蓄所、理发店等小型营业性用房,或符合商业服务网点要求的小区配套服务用房都归入公共建筑节能设计范畴。
- 4.1.5 原《四川省居住建筑节能设计标准》DB 51/5027—2019条文,根据国家标准《建筑节能与可再生能源利用通用规范》GB 5015—2021 总则调整。

本条明确了实现建筑节能的一般技术途径。建筑节能应根据 场地和气候条件,在满足建筑功能和美观要求的前提下,通过优 化建筑外形和内部空间布局,充分利用天然采光以减少建筑的人工照明需求,适时合理利用自然通风以消除建筑余热余湿。在保证室内环境质量,满足人们对室内舒适度要求的前提下,优先考虑优化围护结构保温隔热能力,减少通过围护结构形成的建筑冷热负荷,减低建筑用能需求,继而考虑提高供暖、通风、空调和照明、电气、给排水等系统的能源利用效率,特别是采用扇子、电风扇等强制通风方式减低能耗;在此基础上,通过合理利用可再生能源、实现减低化石能源消耗量的目标。

咨调室外机安装条件对空调设备的运行效率影响很大,建筑 设计时还需考虑空调室外机的合理安装条件。

在实际使用过程中,人的行为方式对实际运行能耗有决定性 作用,应在设计文件中对节能的行为方式进行引导。

# 4.2 居住区规划

4.2.1 场地的竖向规划应综合考虑场地现状地形与各项工程建设场地、工程管线敷设的高程以及城市道路、广场的相互关系,进行场地的土石方平衡,同时还应满足用地地面排水及城市防洪、排涝等各项要求。

4.2.2 第1款为新增条文,尊重自然地形,避免大开大挖。

第2款引自国家标准《建筑节能与可典生能源利用通用规范》 GB 55015—2021 中 2.0.4 条,强调总体规划基本规定。本条文是规划阶段的节能要求。建筑群及建筑的总体规划应在冬季最大限度地利用日照,多获得热量,避开主导风向,减少建筑物外表面热损失;夏季和过渡季最太限度地减少得热并利用自然能来降温 冷却,以达到节能的目的。设计时应注重利用自然通风的布置形式,合理地确定房屋开口部分的面积与位置、门窗的装置与开启方法、通风的构造措施等,从重穿堂风的形成。

4.2.3 居住建筑除了满足朝向的要求及日照的规定外,新建居住区(建筑)与其他公共建筑相邻时,住宅建筑宜避开公共建筑对其造成的不良热环境的影响,如风的微环境、热的微环境(如公共建筑透明曲面外围护结构聚热)等。

#### 4.3 建筑设计

4.3.1 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 中 3.1.2 条。

对于川西高原太阳能丰富地区,并不是所有的建筑外围护结构表面都是散热面,这导致体形系数较大的长方体实际体积热指标小于体形系数小的正方体。诸如,在相同表面积的南向条形建筑(160 m×10 m×14 m)比正方形建筑(40 m×40 m×14 m)体形系数大,但实际耗热量低;同外形的建筑,南北朝向和东西朝向,体形系数相同,但实际耗热量差别大,故在该地区利用传统体形系数约束围护结构传热系数不合理。本标准附录 B 提出热当量体形系数的概念及计算方法,便于直接采用、热当量体形系数计算方法参照附录 B.0.3。

4.3.2 本条为新增条文。为避免出现居住建筑外窗面积过大、能耗过高的情况,增加主要功能房间窗墙面积比应小于 0.8,非主要功能房间的窗墙面积比应小于 0.4 的要求。对于封闭阳台,窗墙比可依据使用该阳台的房间功能进行判定。

- 4.3.3 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 中 3.1.5 条。
- 4.3.4 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 中 3.1.14、3.1.16、3.1.17、3.1.18 条。
- 夏热冬冷地区的建筑, 窗和透光幕墙的太阳辐射得热夏 季增大了冷负荷, 冬季则减小了热负荷, 因此遮阳措施成根据负 荷特性确定 般而言,外遮阳效果比较好,考虑到建筑冬夏不 同的需求、设置可调节的活动遮阳能够最大限度地在冬季利用太 阳辐射, 在夏季避免太阳辐射的影响, 有条件的建筑应提倡活动 外遮阳或中置遮阳,并建议采用外窗遮阳、体化技术。

为避免过分提高和依赖窗自身的遮阳能力,同时在冬季应尽 量允许阳光进入室内,以增加室内被动得热和舒适度。不提倡使 用中、低透光的 Low-E 玻璃器

冬季供暖能耗的地区本提出可调外遮阳要求。在这一地区份 暖能耗在全年建筑总能,在中占主导地位,阳光充分进入室内 利干降低冬季供暖能耗。

- 4.3.7 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 中 3.1.20 条。
- 4.3.9 首国家标准《建筑节能与可再生能源利用通用规范》 GB \$5015—2021 中 5.2.1 条。

新建居住建筑应根据地区太阳能资源及建筑的特点采取太阳 能光伏发电或太阳能热水系统技术。

# 5 建筑围护结构热工设计

## 5.4 围护结构热工设计

5.1.1 本条在国家标准《建筑节能与可再生能源利用通用规范》GB 55015—2021 第 3.1.8 条基础上细化。四川省高海拔严寒、寒冷地区气候特点为"长冬无夏、寒冷季节长,强度低",高海拔严寒地区冬季气温比北方的严寒 C 区温和,供暖负荷强度低于北方的严寒 C 区。以四川省严寒地区的代表城市者尔盖与同气候区的哈尔滨、长春进行比较为例(见图 1)。若尔盖最冷月温度均高于哈尔滨和长春 5 ℃以上。同样,四川省高海拔寒冷地区也呈现比北方寒冷地区更加温和的特点。因此,为提高标准的可操作性,四川省高海拔严寒地区不再划分 A、B、C 三区,非透明围护结构及非南向透明围护结构热工参数的限值参照国标严寒 B 区要求进行取值。由于四川省高热工分区中没有寒冷 B 区,因此高海拔寒冷地区非透明围护结构及非南向透明围护结构热工参数的限值则参照国标寒冷 A 区要求进行取值。

此外,本标准延续了《四川省居住建筑节能设计标准》DB 51/\$027—2019 版中对分户墙和楼板的要求,这里的楼板主要针对主要功能房间,是指卧室、起居室、书房、衣帽间、封闭阳台等空间。厨房、卫生间、楼梯间、储藏室、开敞阳台、户外公共空间等空间的楼板可根据项目实际情况和相关单位具体要求进行保温设计。同时根据国家标准、建筑节能与可再生能源利用通用规范》GB 55015—2021 的规定,增加了楼梯间隔墙、外走廊隔墙的要求。

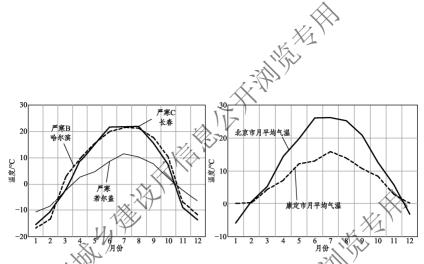



图 1 人四川省高海拔严寒、寒冷地区代表城市与北方城市气温对比图

5.1.2 由于屋面很少有结构性冷(热)桥部位,故未取平均传热系数 Km和平均热惰性指标 Dm作限值规定。但平屋面有非结构找坡层,工程中常用作找坡兼保温。但此天其厚度不一致,为保证屋面的保温隔热性能符合规定的限值,在进行 K和 D 的计算时,找坡层或找坡层兼保温层的诛算 厚度应取屋面找坡层的平均厚度。

当围护结构的平均热惰性指标  $D_m$  较小时,室外温度波动对能耗影响较小,但所造成的围护结构内表面温度波动对室内热环境影响较大。因此,当外墙使用太阳辐射吸收系数小于 0.5 的反射隔热外饰面层的,对围护结构的平均热惰性指标  $D_m$ 进行修正。但对于热阻的贡献较小,故不单独考虑其等效热阳

5.1.3 本条规定了不同气候区的不同朝向外窗《含阳台透明部分及大窗)的传热系数和太阳得热系数 SHGC 的限值,本次修订考虑到国家标准《建筑节能与可再生能源利用通用规范》GB 55015—2021 对节能率的总体提升要求,并沿用《四川省居住建筑节能设计标准》标准中一贯延续的外窗面积判定方法,既保证了节能标准的提高,也兼顾了标准的易用性和延续性。

随着人们生活水平的仓益提高,对室内环境热舒适度的要求

越来越高,加之现行国家建筑节能标准的不断提高,因此本次修订对各气候区的外窗热工性能限值要求均进行了相应的提高。考虑到成都地区在四川省经济水平的领先地位和技术进步的引领作用,较夏热冬冷其他地区的外窗热工性能要求进行了进一步提升。此外,考虑到四川地区高海拔严寒、寒冷地区基本处于太阳能资源丰富地区,南向外窗可作为太阳能蓄热部件考虑,故对该地区南向外窗的热工性能进行适当放宽,特别是太阳得热系数应符合室内得热需求,其满足本标准第9章可再生能源应用中的相关规定即可。

5.1.4 塑料窗窗框比可取 0.25,木窗窗框比可取 0.30,铝合金窗窗框比可取 0.20,聚氨酯窗窗框比可取 0.25。

- 5.1.5 外墙结构性冷(热)桥部位系指嵌入墙体的混凝土或金属梁、柱,墙体的混凝土肋或金属件,装配式建筑中的板材按缝及墙角、墙体勒脚、楼板与外墙、内隔墙与外墙连接处、外窗(门)洞口室外部分的侧墙等部位。这些部位保温薄弱,热流密集,内表面温度较低,也全使这个部位的热损失增大。在进行外墙的热工节能设计时,应根据国家标准《民用建筑热工设计规范》GB 50176—2016 第 5.1.3 条的规定,计算该部位的热阻最小值 Rmin. w[ m²·K )/W]。特别是冬季室外计算温度,从低于 0.9°C 时,应对围护结构内表面进行结露验算,以便确定其是否低于室内空气露点温度。
- 5.1.6 与土壤接触的地面以及地面以上几十厘米高的周边外墙 (特别是墙角)由于受二维、三维发热的影响,比较容易出现表面温度低的情况,一方面造成大量的热量损失,另一方面也容易发生返潮、结露,因此要特别注意这一部分围护结构的保温防潮。

在高海拔严寒和寒冷地区,即使没有地下室,也应该将外墙外侧的保温延伸到地坪以下,有利于减小周边地面以及地面以上几十厘米高的周边外墙(特别是墙角)热损失,提高内表面温度,避免结露。

夏热冬冷地区为控制和防止地面结露泛潮,要求室内空气湿度不宜过高,她表面温度不宜过低。当有需要时,应进行结露验算。因此,建筑要控制室内地面引起泛潮。传统民民中常用的木地板、全台土和灰土等类材料的地面,在潮霉季节,较为干燥,主要原因是这些材料的蓄热系数较小,可减少地表温度与气温间的差值,从而防止泛潮的产生。同样亦可采用地面作保温层增加地板热阻提高地表面温度,或采用表面带微孔的吸湿耐磨的材料亦可。

**5.1.8** 附录 J 各类建筑材料的热物理性能计算参数来源于国家标准《民用建筑热工设计规范》GB 50176—2016 以及四川省现行有关节能技术标准规程的规定进行取值。厂家出具的材料性能检测报告不能作为设计取值依据。

## 5.2 围护结构热工性能权衡判断

- 5.2.1 本标准为满足居住建筑节能设计提供了两种方法,一是符合第 5.1 节的规定性指标要求,二是满足 5.2 节建筑物围护结构热工性能权衡判断的要求。
- 5. 2. 2 ~ 5.2.4 5.2.2 条 ~ 5.2.4 条对进行极衡判断的建筑,规定了围护结构的基本要求,以避免出现制持结构热工性能过差的情况,条文部分参照国家标准《建筑节能与可再生能源利用通用规范》GB 55015—2021 中相关规定。

# 6 供暖通风和空气调节

#### 6.1 一般规定

**6.1.2** 引自《严寒寒冷地区居住建筑节能设计标准》JGJ 26—2018 第 5.1 》部分内容。

## 6.2 热源、热力站及热力网

- 6.2.1 目前本省已经有部分项目采用集中供热系统,考虑不同城市的经济条件、资源状况不同,提出该条文。条件允许时,集中供暖热源宜以小区为单位进行设计。
- 6.2.2 热源应优先采用废热或工业余热,可变废为宝,节约资源和能耗。四川高海拔严寒 寒冷地区多位于川西,如四川甘孜州地热资源十分丰富, 全州 18 个县除石渠、色达两县尚无温泉外,其他各县均有温泉分布。在地热丰富的地区,宜优先利用此类可再生能源,在地热利用时,设计前应进行水文地质勘探和可行性研究。川西高原是四川省乃至我国太阳能的主要分布区,当采用太阳能光热系统为热源时,应考虑到高寒地区多季长、气温低的特性,采取可靠的防冻措施。考虑到高寒地区运维水平较低,鼓励采用以光伏发电为能源的供暖系统, 电转热设备可根据建筑情况,选择热泵、电热膜、发热电缆簧。当采用离网型光伏系统时,应以太阳能利用最大化为目标、尽可能地降低高寒地区居民的运行费用,系统应具备数据远传功能,支持远程维护以降低维护费用。

随着我国双碳目标提出,建筑全面电气化已成必然趋势,居住建筑供暖是碳排放控制的关键;因此应采用低碳的供暖热源。

- **6.2.3** 本条仅针对部分高寒地区项目,其余地区不宜采用集中供热的方式。
- 6.2.4 电锅炉的热效率规定与国家标准《工业锅炉能效限定值及能效等级》GB 24500—2020 规定相同。
- **6.2.5** 《建筑节能与可再生能源利用通用规范》**GB**)55015 第 3.4.2 条
- 6.2.6 本条引自行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26。根据我国目前的技术和管理水平,考虑各地技术及管理上的差异,将室外管网的输送效率确定为 92%。控制管网输送效率在设计阶段主要从循环水泵、流量调节阀的选择、管网管径等方面进行考虑。
- 6.2.7 楼前热表可以理解为是与供热单位进行热费计算的依据、至于楼内住户可以依据不同的方法(设备)进行室内参数(比如热量、温度)测量、然后依据测量值对全楼的耗热量进行住户间分摊。

由于人口总表为所耗热量的结算表,精度及可靠性要求高,价格相对比较昂贵,如果在每个人口设置热量表,会导致投资太高。为了降低计量投资费用,可以在一栋楼设置一个热力人口,当然,系统与外网的连接方式需要做改变。从每栋楼作为一个计量单元来看,这样调整并不影响耗热量的结算。对于建筑结构相近的小区(组团),从降低热表投资角度,也可以若干栋建筑物设置一个热力入口,以一块热表进行该楼的结算。对于只根据住户的面积进行整栋楼耗热量按户分摊时(比如既有居住建筑改造时),

每栋楼应该设置各自的热量表。

6.2.10 建筑物的每个热力人过,应设计安装水过滤器,并根据 建筑物内供暖系统所采用的调节方式,决定是否还要设置自力式 流量控制阀、自力式压差控制阀或其他装置。

供热系统水力不平衡的现象现在依然很严重,而水力不平衡是造成供热能耗浪费的主要原因之一,同时,水力平衡又是保证其他节能措施能够可靠实施的前提,因此对系统节能而言,首先应该做到水力平衡,而且必须强制要求系统达到水力平衡。行业标准《采暖居住建筑节能检验标准》JGJ 132—2001 5.2.6 条规定,热力人口处的水力平衡度应达到 0.9~1.2

除规模较小的供热系统经过计算可以满足水力平衡外,一般室外供热管线较长,计算不易达到水力平衡。为了避免设计不当造成水力不平衡,一般供热系统构应设置平衡阀,否则出现不平衡问题时将无法调节。平衡阀应在每个人口(包括系统中的公共建筑在内)均设置。

系统第一次调试平衡后,在设置了供热量自动控制装置进行 质调节的情况下,实践证明,室内散热器恒温阀的动作引起系统 压差的变化不会太大,因此,只在某些条件下需要设置自力式流 量控制阀或自力式压差控制阀。

关于手动水力平衡阀、流量控制阀、压差控制阀,目前说法不一,比如:流量控制阀也有称为"动态(自动)平衡阀""定流量阀"的。为了尽可能地规范名称,并根据城镇建设行业标准《自力式流量控制阀》CJ/T 179—2003 中对"自力式流量控制阀"的定义"工作时不依靠外部动力、在压差控制范围内,保持流量恒定的阀门"。因此,称流量控制阀为"自力式流量控制阀";尽管

目前还没有颁布压差控制阀行业标准,同理,称压差控制阀为"自力式压差控制阀"。至于手动或静态平衡阀,称之为"平衡阀"。

- **6.2.11 1** 在变流量供暖系统中,不应采用具有自动定流量功能的调节阀(自力式流量控制阀)。
- 2 阀权度 S 的定义是:"调节阀全开时的压力损失 Δ P 高与调节阀所在串联支路的总压力损失Δ P。的比值。"阀权度小,说明调节阀阻力,或压头损失小,调节阀本身的特性会产生较大的偏离与震荡、从而影响其使用效果;同时也说明四路间的互扰现象比较严重。采用不同的平衡手段,则调节阀会得到不同的阀权度,也代表着变流量系统不同的平衡效果。

增加阀权度虽可提高阀门的调节性能,但同时会带来水泵能耗的提高。因此在工程实践中,基于实际需要和"节能/投资比"的考虑,没有必要盲目追求过高的阀权度,S=0.3~0.5 已经可以满足绝大多数供暖系统的要求。

国际上通行的两通调节阀的阀权度控制标准是 0.25~0.50 其中: 0.25 为最低值; 0.50 为推荐值,且供暖与空调基本、没有 区别。

- 6.2.12 规定耗电输热比 EHR 的目的是防止采用过去的水泵, 使水泵的选择在合理的范围内。
- 6.2.13 一、二次热水管网的敷设方式,直接影响供热系统的总投资及运行费用,应合理选取。对于庭院管网和二次网,管径一般较小,采用直埋管敷设,投资较小,运行管理也比较方便。对于一次管网,可根据管径大小经过经济比较确定采用直埋或地沟敷设。
- 6.2.14 人为地随意调节《口处阀门或网路分支阀门,以及热用

户窃水等行为方式会导致负荷的大幅度变化,在设计过程中应采用适当的措施引导行为节能。

6.2.16 随着双碳目标提出、推进建筑供暖热源电气化已经迫在 眉睫。目前居住建筑户用空气源热泵冷暖联供系统主要有天水地 水与天氟地水两种。 整统计分析,天水地水系统初投资比天氟地 水低 10%左右, 运行费用基本持平, 但该系统施工要求相对更高, 在系统选择时,应综合考虑确定。机组性能应符合规行国家标准 《建筑节能与可再生能源利用通用规范》GB 55015 的规定。

#### 6.3 供暖系统

- **6.3.1** 冷热媒的种类及温度合理选取的前提是分析系统设计的技术经济性,在方案选择阶段进行经济技术比较后确定热媒温度是十分必要的。
- 6.3.2 要实现室温调节和控制,必须在末端设备前设置调节和控制的装置,这是室内环境的要求,也是进行热量(费)计量的必要措施,双管系统可以设置室温调控装置。如果采用顺流式垂直单管系统,必须设置跨越管;采用顺流式水平单等系统时,也可通过装置分配阀(H阀),以便设置室温调控装置。
- 6.3.3 楼前热量表是该栋楼耗热量的结算依据,而楼内住户应该理解为各住户之间的热量分摊。当然,每户应该有相应的装置,作为对整栋楼的耗热量进行户间分摊的依据。目前在国内已经有应用的"热量分摊"方法有:温度法、散热器热量分配表法、户用热量表法和面积法等。这里分别阐述其原理和应用时的各种需要注意的因素,供设计时根据具体条件选用参考。

- 1 温度法。温度法供暖热计量分配系统是利用所测量的每户的室内温度,结合每户建筑面积,来对每栋建筑的总供热量进行分摊的。在每户住户内的的门上侧安装一个温度传感器,用来对室内温度进行测量,这种方法认为室温与住户的舒适是一致的。温度采集系统将根据性户内各房间保持不同温度的持续时间进行热费分摊。如果供暖期的室温维持较高,那么该住户分摊的热费也应该较多。遵循的分摊原则是:同一栋建筑物内的用户,如果供暖面积相同,在相同的时间内,相同的舒适度应缴纳相同的热费。它与住户在楼内的位置没有关系,不必进行住户位置的修正。它也与建筑内供暖系统没有直接关系,所以可用于新建建筑的热计量收费,也适合于既有建筑的热计量收费改造。
- 2 散热器热量分配表法。在每台散热器的散热面上安装一台散热器热量分配表,在供暖季前后分别读取分配表的读数,并根据楼前热量表计量得出的供热量,进行每户住户耗热量计算。散热器热量分配表(指蒸发式散热器热量分配表)结构比较简单、价格比较低廉,测量精度够用。不过,在不同散热器上应用时,首先要对散热器热量分配表进行刻度标定;同时,由于每户居民在整幢建筑中所处位置不同,即便同样住户面积,保持同样室温,散热器热量分配表上显示的数字也是不相同的。此如顶层住户会有屋顶,与中间层住户相比多了一个屋顶散热面,为了保持同样室温,散热器必然要多散发出热量来;同样,对于有山墙的住户会比没有山墙的住户在保持同样室温时多耗热量。所以,要将散热器热量分配表获得的热量进行。些修正。比如:根据楼内每户居民在整幢建筑中所处位置,经过模拟计算,扣去额外的散热量;或者减少以计量为基础的计量热价的比例,增加以面积为基础的

基本热价比例。

散热器热量分配表对既有供暖系统的热计量收费改造比较方便,比如将原有垂直单管顺流系统,加装跨越管就可以,不需要改为每一户的水平系统。这种方法的不方便之处是供暖期结束后,需要进入住户内对每个散热器热量分配表进行读数。

- 3 户用热量表法。户用热量表安装在每户供暖环路中,可以测量每个使产的供暖耗热量,但是,我们原有的、传统的垂直室内供暖系统需要改为每一户的水平系统。另外、这种方法与散热器热量分配表一样,需要将各个住户的热量表显示的数据进行折算、使其做到"相同面积的用户,在相同的舒适度的条件下,交相同的热费"。这种方法对于既有建筑中应用垂直的供暖管路系统进行"热改"时,不太适用。
- 4 面积法。在不具备以本条件时,也可按住户面积分摊热量(费)。尽管这种方法是按照住户面积作为分摊热量(费)的依据,但不同于"热改"前的概念。这种方法的前提是该栋楼前必须安装热量表,是一栋长内的热量分摊方式。对于资金紧张的既有建筑改造,也可以应用。
- 6.3.4 散热器恒温控制阀(又称温控阀、恒温器等) 麦装在每台散热器的进水管上,它是一种自力式调节控制阀、用户可根据对室温高低的要求,调节并设定室温。这样恒温控制阀就确保了各房间的室温,避免了立管水量不平衡,以及单管系统上层及下层室温不匀问题。同时,更重要的是当室内获得"自由热"(Free Heat,又称"免费热",如阳光照射,室内热源——炊事、照明、电器及居民等散发的热量)而使室温存升高趋势时,恒温控制阀会及时减少流经散热器的水量,不仅保持室温合适,同时达到节能目的。

当然,如果在散热器前安装一个调节性能好的手动调节阀是可以调节室温的,比如高海拔严寒地区采用铝塑复合管调节阀。但是,手动调节阀难以比较好地调节,更不可能及时、较好地获得"自由热",同时阀门频繁调节容易出现漏水现象,建议有条件时应该尽可能应用散热器恒温控制阀。

散热器恒温控制阀的特性及其选用,应遵循行业标准、散热器恒温控制阀》JG/T 195—2006 的规定。

6.3.5 自国家标准《民用建筑供暖通风与空气调节设计规范》 GB 50736—2012 中 5.3.9 条。

6.3.6 采用热水作为热媒,不仅对供暖质量有明显的提高,而且 便于进行调节。因此,明确规定散热器供暖系统应采用热水作为 热媒。

以前的室内供暖系统设计,基本是按 95 ℃/70 ℃热媒参数进行设计,实际运行情况表明,合理降低建筑物内供暖系统的热媒参数,有利于提高散热器供暖的舒适程度和节能降耗。近年来国内已开始提倡低温连续供热,出现降低热媒温度的趋势。研究表明:对采用散热器的集中供暖系统,综合考虑供暖系统的初投资和年运行费用,当二次管网设计参数取 75 ℃/50 ℃时,方案最优,其次是取 85 ℃/60 ℃时。本条文根据国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736—2012 提出温差不小于20 ℃的要求。

目前,欧洲很多国家正朝着降低供暖系统热媒温度的方向发展,开始采用 60 ℃以下低温热水烘暖,这也值得我国参考。

**6.3.7** 低温地板辐射供暖是层内近 20 年以来发展较快的新型供暖方式,埋管式地面辐射快暖具有温度梯度小、室内温度均匀、

脚感温度高等特点。在同样舒适的情况下,辐射供暖房间的设计温度可以比对流供暖房间低。2~3℃。但地板辐射供暖的热惰性大、响应时间长,房间热质荷具有换气热损失小于散热器供暖房间,而传热损失又大于散热器供暖房间的特点。特别是在高太阳辐射强度地区使用、采用反馈式运行控制策略时会造成供暖负荷大于对流供暖负荷的情况。因此标准规定了应根据当地的气象资料及供暖系统的控制手段,通过经济技术分析确定。

保存较低的供水温度和回水温度,有利于延长塑料加热管的使用寿命,有利于提高室内的热舒适感,有利于保持较大的热媒流速,方便排除管内空气,有利于保证地面温度的均匀。本条文根据国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736—2012 提出供回水温差的相关要求。

有关地面辐射供暖工程设计方面的规定,应遵循现行行业标准《地面辐射供暖技术规程》JGJ 142 执行。不同的热源形式,其可生产的供回水温度区别较大,如以空气源热泵为热源,供水温度不宜过高。因此、设计师应根据热源形式,合理确定供向水温度及温差。

6.3.8 引自分业标准《低温辐射电热膜供暖系统应用技术规程》 JGJ 319 2013。

**6.3.9** 引自国家标准《民用建筑供暖通风与空气调节设计规范》 GB 50736—2012 中 5.9.11 条。

### 6.4 通风和空气调节系统

6.4.1 一般说来,住宅建筑通风设计包括主动式通风和被动式

通风。主动式通风指的是利用机械设备动力组织室内通风的方法,它一般要与空调、机械通风系统进行配合。被动式通风(自然通风)指的是采用"天然"的风压、热压作为驱动对房间降温。在我省多数地区,住宅进行自然通风是解决能耗和改善室内热舒适的有效手段,因为在我省绝大多数地区,过渡季室外气温低于26°C高于18°C的小时数一般占2000~3500h,由于住宅室内发热量小,这段时间完全可以通过自然通风来消除负荷,改善室内热舒适状况。人在自然通风的条件下,当室外空气温度不超过30°C的一般认为仍然感觉到舒适。许多建筑设置的机械通风或空气调节系统,都破坏了建筑的自然通风性能。因此强调设置的机械通风或空气调节系统,都破坏了建筑的自然通风性能。因此强调设置的机械通风或空气调节系统不应妨碍建筑的自然通风。

- 6.4.2 采用分散式房间空调器进行空调和供暖时,这类设备一般由用户自行采购,这条的母的是要推荐用户购买能效比高的产品。目前已发布实施国家标准《房间空气调节器能效限定值及能效等级》GB 12021.3—2019 和国家标准《转速可控型空气调节器能效限定值及能效等级》GB 121455—2013,国家标准《建筑节能与可再生能源利用通用规范》GB 55015—2021 更是提出了强制要求、建议用户选购节能型产品。
- **6.4.4** 对于供暖期较长的地区,比如 HDD 大于 2000 ℃·d 的 地区 回收排风热,能效和经济效益都很明显。
- 6.4.5 目前分散式房间空调器均能对冷 热量进行自动控制。当 采用风机盘管机组时,仅采用三速开关的人工手动方式,无法做到 实时控制,不利于节约能源。因此规定应采用利用温控器对房间温 度进行自动控制的方式。
  - 1 温控器直接控制风机的转速——适用于定流量系统;

- KANKE KA 温控器和电动阀联合控制房间的温度——适用于变流量 2 如果新风经过风机盘管后送出,风机盘管运行与否对新 系统。
- 6, 4, 7 风量的变化有较大影响、易造成浪费或新风不足。
- 在现有的许多空调工程设计中, 由于种种原因 采用了土建风道。从实际调查结果来看,这种方式带来了 的隐患, 其是最突出的问题就是漏风严重, 而且由天大部分工程 是隐蔽工程无法检查,导致系统调试不能正常进行。因此做出严 格规定。
- 设备与管道的保冷层厚度可按国家标准《民用建筑供暖 直风与空气调节设计规范》GB 50736(2012 附录 K 选取。 即川港供养制

## 7 给水排水

#### 4.2 给水与排水系统

7.2.2 控制配水点处的供水压力是给水系统节水设址中最为关键的一个环节。减压限流措施包括设置支管减压阀、减压孔板、调节阀、开启度等。

居住建筑的二次加压及调蓄设施的带能效果,与项目的

- 给水条件、用水规模、供水高度、设备性能、物业管理、供水安全等因素有关。比如: 当城市供水条件允许采用叠压供水方式时,可以采用叠压供水方式; 当建筑的用水规模较小、供水高度较高时, 二次加压设备的分区方式应进行技术经济分析, 不宜设置太多的供水分区; 当物业管理采用阶梯水价、非住宅类居住建筑采用用者付费方式时, 为水效果明显。另外,居住建筑的节水、节能措施,不能降低生活用水的水质、水压和水量的标准,影响供水安全。
- 7.2.4 高位水箱供水系统的高位水箱补水泵一般工频运行、由高位水箱的水位控制水泵的启停,节能效果明显、有条件时推荐采用。

如果获得城镇供水管理部门许可,為位水箱补水泵采用叠压 供水设备,还可充分利用城市管网的供水压力,节能效果将更加 明显。叠压供水设备补水的高位水箱供水系统的系统流程为:城 镇供水管一叠压供水设备一高位水箱—用户。

7.2.5 低位水箱的设置位置应考虑尽量利用市政供水压力,不

宜设于过低的地下室楼层。

- 7.2.8 因地下渗灌管道微孔易被堵塞及管道的使用寿命问题, 绿化灌溉不推荐采用地下渗灌。
- 7.2.9 建筑排水系统应遵循"高水高排、低水低排"的原则、尽量采用重力排水方式。

#### 7.3 生活热水

7.3之 第 2 款主要针对非住宅类的居住建筑而言。

对于管网输送距离较远、用水量较小的个别热水用户(如需要供应热水的洗手盆),当距离集中热水站室较远时,可以采用局部、分散加热方式,不需要为个别的热水用户敷设较长的热水管道,避免造成热水在管道输送过程中的热损失。

热水用水量较大、用水点比较集中的建筑,如旅馆、医院、 疗养院、公共浴室等,应采用集中热水供应系统。在设有集中供 应生活热水系统的建筑,应设置完善的热水循环系统。

7.3.2 建筑热源应进行技术经济比较,综合考虑余热、废热、地 热、太阳能、热泵、燃气、燃油、电加热等各种能源方式,可采 用单一能源,也可采用多种能源的组合。

余热包括工业余热、集中空调系统制冷机组排放的冷凝热、 蒸汽凝结水热等。

按《建筑节能与可再生能源利用通讯规范》GB 55015—2021 要求,新建建筑应安装太阳能系统。太阳能系统包括太阳能光热 利用系统、太阳能光伏发电系统和太阳能光伏光热(PV/T)系统。 太阳能系统应根据项目特点和使用需求进行技术经济分析,协调 太阳能系统的形式和规模。当项目屋面已安装太阳能光伏发电系统后,应分析是否还有条件设置太阳能热水系统,以及太阳能热水系统设置后的保证率是高偏低,没有经济价值等技术经济因素。当太阳能资源丰富,但项目没有热水需求,或热水需求很少时,给排水专业应与电气专业协调,根据项目用能和生活热水需求的特点,进行技术经济比较,确定太阳能利用的方式。

可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。四川省日照分布的基本特征是高原多、盆地少、川西高原地区等太阳能资源丰富地区,应优先使用太阳能热水系统;四川省西部等太阳能资源一般地区,宜选择和使用太阳热水系统,或太阳能预加热热水系统。四川省成都平原等太阳能资源贫乏地区,宜通过技术经济比较,确定太阳能利用方式。

- 7.3.3 引自《建筑节能与可再生能源利用通用规范》GB 55015 第 3.4.2 条。
- 7.3.8 使用生活热水需要通过冷、热水混合后调整到所需要的使用温度。故热水供应系统需要与冷水系统分区一致,保证系统内冷水、热水压为平衡,达到节水、节能和用水舒适的目的,要求按照现行国家标准《建筑给水排水设计标准》GB 50615 和《民用建筑节水设计标准》GB 50555 有关规定执行

集中热水供应系统要求采用机械循环、保证干管、立管的热水循环,支管可以不循环,采用多设立管的形式,减少支管的长度,在保证用水点使用温度的同时也需要注意节能。集中热水供应系统的节水措施有:

- 1 保证用水点处冷、热水供水压力平衡的措施;
- 2 最不利用水点处冷、热水供水压力差不宜大于 0.02 MPa;

』和温度显示功能的混合器、混气 」设置感应或数全自动刷卡式淋浴器等。 。资料结果证实、军团菌极易对人体肺部造成户 。 可菌繁殖和生长的适宜温度为 20~50 ℃, pH 值为 5 最佳生长温度分 40 ℃。为了抑制军团菌生长,保护热水 用人的安全,规定了旅馆、医院等公共建筑最不利配水点热水的、 供水温度不快事 50 ℃。 即加州為民族縣

# 8// 电气

#### 8.1 一般规定

8.1.2 住宅建筑电气设计包括强电和弱电智能化两部分,本条文依据《食韵建筑电气设计规范》JGJ 242 总则做此规定。

智能化系统配置应满足现行国家标准《智能建筑设计标准》 GB 50314 的要求。现在住宅的智能化系统的发展也越来越先进, 在项目所需的智能化系统中,通过相关于系统采用的节能控制措施,对建筑节能可以发挥很好的作用。

#### 8.2 供配电系统

8.2.2 要求变电所位无负荷中心是从提高电能质量、节能、节状的角度考虑,但建筑设计需要各专业整体考虑,变电站的位置是电气专业与其他专业协商的结果。

根据《居民住宅小区电力配置规范》GB/T 36040—2018 第9.1条做此规定,低压线路的供电半径应根据具体供电条件,居民用电干线一般不超过200 m。可保证居民用户供电质量,降低线路损耗。

- 8.2.4 1 根据《居民住宅小区电力配置规范》GB/T 36040—2018 11.5 条做此规定。
- 2 根据《民用建筑电气设计标准》GB 51348—2019 第 3.6.4 条文说明,《电力系统电压质量和无功电力管理规定》规定,

100 kV·A 及以上, 35 kV 以下供电的电力用户在用户高峰负荷时变压器高压侧功率因数不宜低于 0.95。

#### 8.2.5 供配电系统的谐波治理

1 居住建筑中会有越来越多的 LED 光源、大量的家用电器、 电动机变频调速控制装置等非线性用电设备,都会产生谐波源; 这些谐波源累积起来会产生大量的谐波。

谐波治理应根据负载的实际情况,在变电所采用电容+电抗的无功补偿装置,配置电抗器作为谐波抑制装置、避免高次谐波电流与电力电容发生谐振,影响系统设备可靠运行。也可采用静止无功发生器(SVG)兼顾容性和感性无功补偿或有源滤波装置。

- **2** D, yn11 结线组别变压器的容量在三相不平衡下可以得到充分利用,并有利于抑制三次谐波。
- 8.2.6 1 电力变压器能效等级按照《电力变压器能效限定值及能效等级》GB 20052—2020 分为 3 级,其中 1 级能效最高,损耗最低,3 级(能效限定值)能效最低。设计时应选用高于能效限定值或能效等级 3 级的产品。

#### 8.3 照 明

- 8.3.1 照度标准值不能随意进行调整,对于特定场所,其照度标准值可提高或降低一级,相应的LPD限值也应进行调整。
- 8.3.2 夜景照明是建筑景观的一大亮家/也是节能的重点。
- 8.3.3 本条引自国家标准《建筑节能与可再生能源利用通用规范》GB 55015—2021 中 3.3.1条

照明光源、LED 灯具、填流器或驱动电源的能效等级为 1, 2, 3

级,1级最高,3级(能效限定值)最低。设计时应选用高于能效限定值的产品。镇流器对LPD值的影响以T8荧光灯(36W)为例,如用高品质低损耗电子镇流器(2级能效),与电感镇流器相比,照明安装功率可降低20%,LPD值可下降20%。

到目前为止,我国已正式发布的照明产品能效标准如表1.00元。

| 表 1 我国已常 | 制定的照明产品能效标准 |
|----------|-------------|
|----------|-------------|

| - |       |          | ( '( )                  |
|---|-------|----------|-------------------------|
|   | 序号 人  | 标准编号     | 标准名称                    |
|   | 1-/2/ | GB 17896 | 管型荧光灯镇流器能效限定值及能效等级      |
|   | 2     | GB 19043 | 普通照明用双端荧光灯能效限定值及能效等级    |
|   | 3     | GB 19044 | 普通照明用自镇流荧光灯能效限定值及能效等级   |
|   | 4     | GB 19415 | 单端荧光灯能效限定值及节能评价值        |
|   | 5     | GB 19573 | 高压钠灯能效限定值及能效等级          |
|   | 6     | GB 19574 | 高度納灯用镇流器能效限定值及节能评价值     |
|   | 7     | GB 20053 | 金属卤化物灯用镇流器能效限定值及能效等级    |
|   | 8     | GB 20054 | 金属卤化物灯能效限定值及能效等级        |
|   | 9     | GB 30255 | 室内照明用 LED 产品能效限定值及能效等级  |
|   | 10    | GB 38450 | 普通照明用 LED 平板灯能效限定值及能效等级 |

## 8.3.5 照明灯具及附属装置的选择

1 照明灯具选择应符合现行国家标准《建筑照明设计标准》 GB 50034 相关要求。

2 整流器、高强度气体放电灯的触发器、独立式驱动电源为 灯具附件,配合灯具使用。

按照国家标准《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16 A)》GB 17625、1—2012 对照明设备(C类设备)谐

波限值的规定,对功率>25 W 的成电灯的谐波限值规定较严,不 会增加太大能耗;而对≤25%的放电灯规定的谐波限值很宽 (3次谐波可达86%),将使中性线电流大大增加,超过相线电流 达 2.5 倍以上,不利无节能和节材。所以≤25 W 的放电灯选用的 镇流器官满足下列条件之一:(1)谐波限值符合现行国家标准规 定的功率大于125 W 照明设备的谐波限值;(2)3次谐破电流不大 于基波电流的33%。

8.3.6 用定时开关、光控开关、智能照明控制系统等节能控制 方式属于较为成熟的技术,节能效果很好,应用也比较广泛。结 李奇切能空间的便用特点采用合理的节能控制方式,有利于节能。 条规定参照《住宅建筑电气设计规范》,3GJ 242—2011 第 9.5 节。 答功能空间的使用特点采用合理的节能容制方式,有利于节能。 即川海根排

## 9 可再生能源利用

#### 9.1 一般规定

9.1.1 川西、州西南高海拔地区太阳能资源高于 II 类。具有理想的开发利用为力。四川地域广泛,地热能资源丰富。为降低建筑能耗、应努力增加太阳能、地热能等可再生能源在建筑中的应用范围。在技术、经济、环境和资源等条件允许的情况下,应充分利用太阳能、地热能等可再生能源来替代基、石油、电力等常规能源,从而节约居住建筑供热供暖和生活用能,减轻环境污染。可再生能源技术多样,各项技术均有其适用性,需要不同的资源条件和技术经济条件。因此、可再生能源利用时,应做到因地制宜,多能源互补和综合利用,选择适宜当地经济和资源条件的技术来实施。在太阳辐照条件好的地方,以太阳能利用为主,其他可再生能源为辅

夏热冬冷地区太阳能资源较为贫乏,有效利用太阳能需考虑 多能互补方式。互补能源应根据建筑使用特点,用热量、能源供 应,维护管理及卫生防菌等因素选择,宜优先选用废热、余热等 低品位能源和空气源热泵等其他可再生能源。空气源热泵制生活 热水及冬季供暖可作为可再生能源措施%

9.1.2 太阳能利用技术包括被动式太阳房、主动式太阳能光热 利用和太阳能光电利用。太阳能光伏发电适宜在市政电网未覆盖 的地区利用,太阳能热水在、些农村已经普遍应用,尤其是家用 太阳能热水系统。太阳能供暖已经实施多项示范工程,是改善居 住建筑冬季供暖室内热环境的有力措施之一。因此,在居住建筑中,选择的系统类型应与当地的太阳能资源和气候条件,建筑物类型和投资规模等相适应,在保证系统使用功能的前提下,使系统的性价比最优。

热泵技术包括应用浅层地热能的地源热泵系统和空气源热泵系统。地源热泵系统是以岩土体、地下水或地表水为低温热源,利用热泵将蓄存在浅层岩土体内的低温热能加以利用、对建筑物进行供暖空调的系统。地源热泵系统分为地埋管地源热泵系统(又称土壤源热泵系统)、地下水地源热泵系统和地表水地源热泵系统。空气源热泵是一种利用高位能使热量从低色热源空气流向高位热源的节能装置。空气作为热泵的低位热源,取之不尽,用之不竭,可以无偿地获取,而且空气源热泵的安装和使用都比较方便,但在严寒和寒冷地区使用时需参虑防冻等问题。

9.1.3 建设可再生能源利用设施,应当与建筑主体工程同步设计。目前,可再生能源利用的系统设计与建筑主体设计脱节严重。因此在进行建筑设计时,其可再生能源利用设施也应与主体工程设计同步,从建筑及规划开始即应涵盖有关内容,并贯穿各专业设计全过程,应用可再生能源时应与相应专业设计协调一致,避免出现因节能技术的应用而浪费其他资源的现象。

## 9.2 被动式太阳房

9.2.1 被动太阳房是冬季供暖最简单、最有效的一种形式。尤其在川西、川西南高海拔地区,冬季太阳能丰富,最冷月平均气温大于0℃,只要建筑围护结构采取一定的保温措施,被动太阳房

完全可以达到室内热环境所要求的基本标准。如西昌、甘孜等地南向房外墙采用直接受益式被动太阳房,冬季可提高室温 5~8 °C,如巴塘、九龙部分地区凌晨 6:00 时室外气温-8 °C时,室温仍高达 10 °C,这一地区应优先考虑被动太阳房冬季供暖。由于被动太阳房在阴天和夜间不能保证稳定的室内温度,遮阳也会减少进入房间的热量,而且房间的朝向也限制了被动太阳房的广泛采用,因此,宜采用其他主动式供暖系统进行辅助供暖。

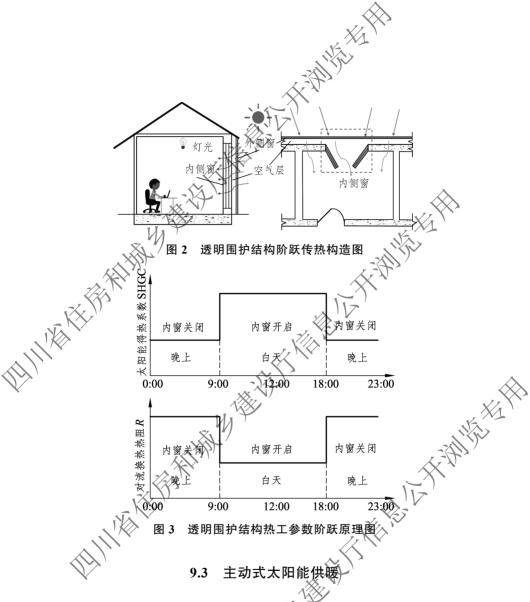
在冬季日照率大于 55%、小于 70%的地区太阳能较丰富,由于被为式太阳房不能保证室内热环境达到所要求的标准,应根据当地的能源结构采用其他主动式供暖系统进行供暖。从利用可在再生能源和节能的角度考虑, 宜采用被动式太阳能进行辅助供暖。

9.2.3 被动式太阳能供暖三种基本集热方式具有各自的特点和适用性。直接受益式或附加阳光间式白天升温快,昼夜温差大,因而适用于在白天使用的房间,如起居室。集热蓄热墙白天升温慢,夜间降温也慢,最减温差小,因而适用于主要在夜间使用的房间。

被动式太风房南向外窗作为主要的集热部件,是太阳辐射进入室内的主要途径,因此,应避免对南窗的遮挡,各理选择窗户类型、减少窗框与窗扇的自身遮挡,使太阳辐射尽可能多地进入室内

9.2.4 为了获得更多的太阳辐射,南向窗的面积应尽可能地大,但同时需要避免产生室内过热现象及减少夜间的热损失,因此,需要确定合理的窗口面积,同时做好夜间的保温。

通过动态模拟,随着窗墙上的增大,得热逐渐增加,当南向窗的窗墙面积比大于50%后,得热与失热将逐渐趋于平衡,因此


规定南向窗的窗墙面积比应大于50%

外窗应采用夜间保温措施。川西高原及川西南地区民居有在外窗内侧设置双扇木板的做法,还可以采用保温窗帘,如由一层或多层镀铝聚酯薄膜和其他织物一起组成的复合保温窗帘。气候温和的西昌等地区。采用单层玻璃窗可以提高太阳辐射人外率,因此建议采用单层玻璃窗。而气候寒冷的地区由于夜间通过外窗的热损失去很大比例,因此宜采用中空玻璃窗。

- 9.2.5 果热蓄热墙是对直接受益式的一种改进、在玻璃与它所供暖的房间之间设置了蓄热体。与直接受益式比较,由于其良好的蓄热能力,室内的温度波动较小,热锅适性较好。但是集热墙系统构造较复杂,系统效率取决于实体集热墙的蓄热能力、是否设置通风口以及外表面的玻璃、经过分析计算,在总辐射强度>300 W/m²时,有通风孔的实体墙式太阳房效率最高,其效率较无通风孔的实体墙式太阳房高出1倍以上。因此,在设计中推荐使用有通风口集热蓄热墙式。集热效率的大小随风口面积与空气间层断面面积的论值的增大略有增加,适宜比值为 0.8 左径。集热表面的玻璃处透光系数和保温性能同时俱佳为最优选择,因此,单层玻璃是最佳选择,其次是单框双玻窗。集热墙体的蓄热量取决于面积与厚度,一般居室墙体面积变化不长。因此对厚度做以下推荐:当采用砖墙时,可取 240 或 370 mm,混凝土墙可取 300 mm,土坯墙可取 200~300 mm。
- 9.2.6 附加阳光间是实体墙与直接受益式被动太阳房的混合变形。附加阳光间增加了地面部分为蓄热体,同时减少了温度波动和眩光。当公共墙上的开孔率大于15%时,阳光间内可利用热量基本上可通过空气自然循环进入供暖房间。采用阳光间集热时,

应根据设定的太阳能节能率确定集热负荷系数,选取合理的玻璃层数和夜间保温装置。阳光间进深加大,将会减少进入室内的热量,本身热损失加大。当进深为 1.2 m 时,对太阳能利用率的影响系数为 85%左右。

- 9.2.7 在利用太阳能供暖的房间中,为了营造良好的室内热环境,需要注意两点:
  - 1 设置足够的蓄热体,防止室内温度过大波动。
- 2 蒸热体应尽量布置在能受阳光直接照射的地方。参考国外的经验结论,单位集热窗面积,宜设置 3 名 倍面积的蓄热体。 9.2.8 太阳能供暖建筑获取太阳热能主要靠南向集热窗,而它既是得热部件,又是失热部件,必须通过计算分析来确定开窗面积和窗的热工性能,使其在冬季进入室内的热量大于其向外散失的热量。冬季供暖通过窗口进入室内的太阳辐射有利于建筑的节能,因此,增大南窗的面积,同时要避免窗向室外的传热损失和夏季室内过热。
- 图 2、图 3 为透明围护结构阶跃传热的基本构造及其原理。 阶跃传热特性主要体现在两方面:一是白天内侧中空玻璃窗开启 状态下,直接受益窗的太阳能得热系数 SHGC 阶跃北高,使得太 阳能容易集得进来(虽然白天内侧窗打开会造成传热系数增加, 但只天外侧玻璃吸收太阳能会使其本身温度升高,减少室内向室 外传热);二是夜晚内侧中空玻璃窗关闭状态下,直接受益窗的综 合换热热阻 R 阶跃上升,热量不容易通过围护结构传递到室外, 使得太阳能可以保存得住。阶跃设计最终通过热工参数的阶跃变 化大幅度提升太阳能利用率,提高室内温度,故规定以夜间工况 作为其热工性能是否达标的判定依据。

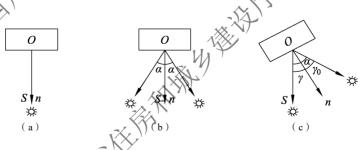


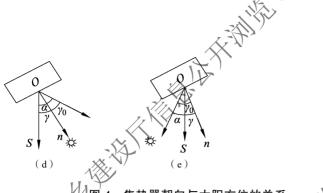
9.3.1 采用主动式太阳能供暖的建筑,系统热负荷宜进行全年动态负荷模拟计算确定,并根据条件动态负荷计算结果,通过技术经济分析确定集热器面积、蓄热容量及集热系统的设置。

在不利的阴、雨、雪天气条件下,太阳能集热系统完全不能

工作,这时建筑物的全部热负荷都需依靠辅助热源供给。辅助热源的供热量应能满足建筑物的全部或部分热负荷需求,这部分的热负荷计算与进行常规热源设计的原则、方法完全相同,供暖室内计算温度应按照本标准第 3.0.2 条执行。

- 9.3.2 引自国家标准《太阳能供热采暖工程技术标准》 GB 50495—2019。
- 9.3.3 引起国家标准《建筑节能与可再生能源利用通用规范》 GB 55013 2021 中 5.2.4 条。


在屋顶上安装的太阳能集热系统有可能影响到相邻建筑的底层房间不能满足日照标准要求;在限台或墙面上安装有一定倾角的太阳能集热器时,也有可能会影响下层房间不能满足日照标准要求,必须在进行太阳能集热系统设计时予以充分重视。


- **2** 太阳能集热系统管道应选用耐腐蚀和安装连接方便可靠的管材,可采用铜管、不锈钢管、塑料和金属复合管等。
- 9.3.4 1 太阳能集热器所获得的有效集热量受到地理纬度、集热器安装方位、安装倾角及气象条件等的影响,为此,编制组利用自编程序,根据集热器安装地点的地理位置与气象条件,进行了详尽的模拟计算。结果表明:川西高海拔严寒、寒冷地区最佳的朝向为一5°~+5°,最佳的安装倾角为50°~55°、为了不对建筑规划设计的限制过于严格,故编制组对集热器安装范围进行了适当扩展:集热器朝向在-20°~+20°的范围为时,供暖季节有效集热量波动在10%以内,且偏东对有效集热量影响较大;安装倾角选择在当地纬度~当地纬度+25°的范围内,供暖季节有效集热量波动在15%以内。
  - 2 如果系统中太阳能集热器的位置设置不当,受到前方障

碍物或前排集热器的遮挡,如不能保证太阳能集热器采光面上的太阳光照,系统的实际运行效果和经济性都会大受影响,所以需要对放置在建筑外围护结构之太阳能集热器采光面上的日照时间作出规定。冬至日太阳高度角最低,接收太阳光照的条件最不利,规定此时集热器采光面上的日照时数不少于 4 h,是综合考虑系统运行效果和围护结构实际条件而提出的;由于冬至前后在早上10点之前和下午 2 点之后的太阳高度角较低,对应照射到集热器采光面上的太阳辐照度也较低,即该时段系统能够接收到的太阳能热量较少,对系统全天运行的工作效果影响不大;如果增加对口照时数的要求,则安装集热器的屋面面积要加大,这在很多情况下不可行,所以取冬至日日照时间44分最低要求。

除了保证太阳能集热器采光面上有足够的日照时间外,前、后排集热器之间还应留有足够的问距,以便于施工安装和维护操作,集热器应排列整齐有房,以免影响建筑立面的美观。

3 本款给出了某一时刻太阳能集热器不被前方障碍物遮挡阳光的日照间距计算公式。公式中的计算时刻应选冬至日人此时赤纬角  $\delta$  为 23 26°)的 10:00 或 14:00;公式中的角  $\gamma_0$  和太阳方位角  $\alpha$  及集热器的方位角  $\gamma$  (集热器表面法线在水平面上的投影线与正南方向线之间的夹角,偏东为负,偏西为正)有如下关系,见





/图 4 集热器朝向与太阳方位的关系

 $\gamma_0 = 0, \ \gamma = 0, \ \alpha = 0; \ (b) \ \gamma_0 = \alpha, \ \gamma = 0;$ 

9.3.5 1 采用主动式太阳能供暖的建筑、系统热负荷宜进行供暖季动态负荷模拟计算确定,并根据供暖季动态负荷计算结果,通过技术经济分析确定集热器面积。

- **2** 按 Solar Engineering of Thermal Processes 等国外资料,由于集热器不清洁,集热器性能一般下降 1%~5%。
- 9.3.6 1 季节蓄热太阳能液体工质集热器供暖系统的设备容量较大,需要较大的蓄热容积,投资较高,应用于太阳能富集地区的综合效益较差。为提高系统的经济性,对太阳能富集地区建筑的供暖,采用短期蓄热太阳能液态工质集热器供暖系统较为适宜。
- - 3 新增条文,考虑采用用护结构进行蓄能,实现蓄热与建筑

- 一体化。建筑内围护结构如内墙和混凝土地板具有较高的蓄热性 能,可与空气集热器结合,形成热风内墙或热风地板结构,作为 热风供暖蓄热系统,可有效提高川西、川西南高原偏远地区居住 建筑夜间温度,且空气作为介质,易于管理,无需考虑防冻问题。
- 太阳能的矮点之一是其不稳定性、太阳能集热器采米面 上接收的太阳辐照度是随天气条件不同而发生变化的人所以在投 资条件许可时,应积极提倡采用自动控制变流量运行为阳能集热 系统,以是高集热流体的热品质和降低水泵能耗、提高系统效益。
- 9.3.8 引自国家标准《太阳能供热采暖工程技术规范》GB 50495— 2009
- 新增条文,考虑热风可直接送入室内或先经结构蓄热再 放热,需对不同技术进行综合分析
- 引自国家标准《公共建筑节能设计标准》GB 50189-9.3.12 2015 第 7.2.4 条。在太阳能利用时,由于太阳能的间歇性, 在系统中设置其他能源辅助加热设备,以保证太阳能供热系统 定可靠运行,并降低系统的规模和投资。辅助热源的选择应根据 当地实际条件, 不可能利用工业余热、废热等低品位能源或生物 质燃料等可再生能源。
- 9.3.13 太阳能保证率的选用与系统使用期内的太阳辐照、气候 条件、产品与系统的热性能、供热供暖负荷、末端设备特点、系 统成本和开发商的预期投资规模等因素有关。太阳能保证率影响 建筑造价、节能、环保和社会效益。水类规定的保证率取值参考 现行国家标准《可再生能源建筑应用工程评价标准》GB/T 50801 的有关规定。

## 9.4 光伏系统

- 9.4.1 现行国家标准《建筑光伏系统应用技术标准》GB/T 51368 适用于新建、改建和扩建的建筑光伏系统的设计、施工、验收和运行维护。
- 9.4.2 并网光伏系统除满足现行国家标准《光伏系统并网技术要求》68%了19939 的相关规定外,还应经供电局的批准。光伏系统并网后,一旦公共电网或光伏系统本身出现异常或处于检修状态时,两系统之间如果没有可靠的脱离,可能对电力系统或人身安全带来影响或危害。并网保护功能和装置同样也是为了保障人员和设备安全。

- 9.43 国家标准《建筑节能与可再生起源利用通用规范》 GB 55015—2021 第 5.2.6 条第 2 款。
- 9.4.4 国家标准《建筑光伏系统应用技术标准》GB/T 51368 适用于新建、扩建、改建建筑光伏系统的设计、施工、验收和运行维护。

- 9.4.5 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 第 5.2.12 条。太阳能光伏组件工作时自身温度会 升高,可达 70 ℃以上,对属护结构保温、输配电电缆等产生不利 影响,甚至存在安全隐患,因此组件供应商应给出在设计安装方 式下,项目所在地的组件在太阳辐照最高等最不利工作条件下的 组件背板最高工作温度,设计人员应该据此温度设计其安装方式。 同时,由于光伏组件自身温度升高后其发电效率下降、需结合适 宜的措施对光伏组件进行降温。
- 9.4.6 近年来,太阳能光伏组件产品的效率呈现出了快速上升的趋势,根据对主流光伏组件厂家设备性能参数的调研,给出了上述组件要求。

引自国家标准《建筑节能与中再生能源利用通用规范》 GB 55015—2021 第 5.2.9 条※

- 9.4.7 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 第 5.25 条。本条对太阳能系统的安全性提出 要求。
- 1 太阳能热利用或太阳能光伏发电系统及其构件应满足结构安全要求、包括:结构设计应为太阳能系统安装埋设预埋件或其他连接件;连接件与主体结构的锚固承载力设计值应大于连接件本身的承载力设计值。太阳能集热器的支撑结构应满足太阳能集热器运行状态的最大荷载和作用。此处,与电气及防火安全相关的内容应满足电气和防火工程建设强制性规范的要求,比如太阳能热水、空调系统中所使用的电气设备都应装设短路保护和接地故障保护装置。
  - 2 太阳能集热器和光伏电池板可用于替代围护结构构件,

但必须满足其相应的安全性能和功能性要求。例如,直接构成阳台栏板时,应符合强度及高度的防护要求。根据人体重心和心理因素而定,阳台栏杆应随建筑高度而增高,如低层、多层居住建筑的阳台栏杆不应低于1.10m。当构成的围护结构构件为幕墙时,除满足幕墙抗冲击、抗风压等要求外,还应满足气密、水密等要求。

3 建筑设计时应考虑在安装太阳能集热器或光优电池板的墙面、阳台或挑檐等部位,为防止集热器或光优电池板损坏而掉下伤人,应采取必要的技术措施,如设置挑檐、人口处设雨篷或进行绿化种植等,使人不易靠近。集热器或光伏电池板下部的杆件和顶部的高度也应满足相应的要求。

## 9.5 地源热泵系统

- 9.5.1 引自国家标准《地源热泵系统工程技术规范》GB 50366—2009 第 3.1.1 条。工程场地状况及浅层地热能资源条件是能否应用地源热泵系统的基础。地源热泵系统方案设计前,应根据调查及勘察情况,选择采用地埋管、地下水或地表水地源热泵系统。浅层地热能资源勘察包括地埋管换热系统勘察、地下水换热系统勘察及地表水换热系统勘察。
- 9.5 岩土体的特性对地埋管换热器施工进度和初投资有很大影响。坚硬的岩土体将增加施工难度及放投资,而松软岩土体的地质变形对地埋管换热器也会产生不利影响,为此,工程勘察完成后,应对地理管换热系统实施的可行性及经济性进行评估。
- 9.5.3 引自国家标准《地源热泵系统工程技术规范》GB 50366—2009 第 5.1.1 条。可靠回灌措施是指将地下水通过回灌井全部送

回原来的取水层的措施,要求从哪层取水必须再回灌哪层,且回灌井要具有持续回灌能力。同层回灌可避免污染含水层和维持同一含水层储量,保护地热能资源。热源井只能用于置换地下水冷量或热量,不得取水用于其他用途。抽水、回灌过程中应采用密闭等措施,不得对地下水造成污染。

经到报准

9.5.4 使用地埋管换热系统时,必须注意全年的冷、热平衡问题。因为地下埋管的体积巨大,每根管只可对其周围的有限体积的土壤发生作用,且可实现与外界换热的面积极少、如果每年热量不平衡而造成积累,一定会导致土壤温度的逐年升高或降低,从而影响地埋管换热器的换热性能,降低地埋管换热系统的运行效率。因此,地埋管换热系统设计应考虑全年冷热负荷的影响。

变流量系统设计可降低地下水换热系统的运行费用,且进入 地源热泵系统的地下水量越发,对地下水环境的影响越小。

9.5.5 目的是减小对地表水体及其水生态环境和行船等影响。

#### 9.6 空气热泵系统

9.6.1 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015 2021 第 5.4.1 条。空气源热泵机组的制热量会受到空气温度、湿度和机组本身融霜特性的影响,在设计工况下的制热量通常采用下式进行计算:

$$Q = q \times k_1 \times k_2 \tag{1}$$

式中 Q--机组制热量(kW)

q——产品样本中的制**发**量(标准工况:室外空气干球温度  $7 \, ^{\circ}$ C,湿球温度  $6 \, ^{\circ}$ C)(kW);

 $k_1$ ——使用地区室外空气调节计算干球温度修正系数;  $k_2$ ——机组融霜修正系数。

此外,采用空气源多联式空调(热泵)机组时,连接管长度和高差的增加将导致压力变化使机组制热运行时的冷凝温度降低、制热量减小,能效比降低、制冷剂沉积与闪发,由此会外起系统性能衰减,影响机组的安全、稳定运行,故需考虑管长和高差修正。

- 9.6.2 自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 第 5.4.2 条。当空气源热泵系统以供暖为主时, 应以供暖热负荷选择系统热源。空气源热泵的平衡点温度是该机 组的有效制热量与建筑物耗热量相等时的室外温度,当这个温度 比建筑物的冬季室外计算温度高时、就必须设置辅助热源。应根 据不同地区的实际条件,进行技术经济比较确定空气源热泵机组 和辅助热源承担热负荷的合理比例。
- 9. 6. 3 引自国家标准 建筑节能与可再生能源利用通用规范 GB 55015—2021 第 5.4.3 条和 5.4.4 条。
- 9.6.4 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 第 5.4.5 条。为保障安全,在可能存在冻结风险 的地区应用空气源热泵系统,要注意采取相关措施,避免冻结造 成系统无法使用。可采取主机分体式布置,至外侧仅为室外侧换 热器及风扇,压缩机、膨胀阀、冷凝器以及输配水系统等放置于 室内侧。
- 9.6.5 引自国家标准《建筑节能与可再生能源利用通用规范》 GB 55015—2021 第 5.4.6 条。